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CONTENT-ADDRESSABLE MEMORIES

* Common memories: retrieve data by providing the address of the
memory location where the data is stored.

* Content-addressable memories (CAMs, also called associative me-
mories): retrieve data based on part of the data itself. Two types:

+ Autoassociative memories: part of the pattern to be retrieved is
given as input. Example: Hopfield memories.

+ Heteroassociative memories: one pattern is retrieved as function
of another. Example: Kanerva memories.

* The principle for the implementation of CAMs is to use the equilibri-
um points of nonlinear dynamical systems. They are built from inter-
connected artificial neurons.

* The equilibrium points are also called attractors. The area of the
state space around an attractor is a basin of attraction.
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HOPFIELD CAM MODEL (1)

* There are N neurons that are fully interconnected (connections be-
tween any pairs of neurons). The output values are given by: Xx;,
i=1,...,N.

* The output values are discrete: x; = 1 v x; = —1. All outputs are
collected in the vector x.

* The outputs are computed from: x;(t + 1) = ¢ . Note that

N

> wixi(h)
j=1
in this type of neural network, the weights are fixed and the state

(neuron outputs) evolve in time.

* The weights are symmetric: w; = w;.
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HOPFIELD CAM MODEL (2)

* The patterns to be stored in the memory are the vectors xP,
p=1,..,0Q.

Q
* The weights are chosen as: w; = z xipxjp. This is the Hebbian
p=1
learning rule.
* Note that the weights are the elements of the correlation matrix of

Q
the patterns: W = > xP(xP)".
p=1
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HOPFIELD CAM PROPERTIES

* States close to one of the patterns to be solved evolve to the that par-
ticular pattern (if some conditions are respected).
* States corresponding to the patterns are not the only stable states

(equilibrium points). An undesired stable state is called a spurious
State.
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LYAPUNOV STABILITY OF THE
HOPFIELD CAM MODEL (1)

* Consider the following Lyapunov function: V(x) = —

i

* Because x;x; is always positive: V(x) = C — _Z z W;iXiX
i=1lj=1]=i
* Suppose some x, changes value fromtime ttotime t + 1and all oth-
er outputs remain the same. The change in the Lyapunov function:

AV = VX(t + 1)) — V(X))

NI
i
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LYAPUNOV STABILITY OF THE
HOPFIELD CAM MODEL (2)

* AV = 0for x,(t + 1) = x(1).
X+ 1) = —x(b):

N N
AV =2 > wxOx(1) = 24() D Wik ®) — 2w
I=1]=k =1
* Both terms are negative (in the first term, the summation should
have a different sign than x,(t) due to the assumption; the second
term is negative as all w,, are positive due to the Hebbian learning
rule), proving that AV < 0 always holds which means that the sys-
tem always converges to an equilibrium point.
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STORAGE CAPACITY (1)

* Take a stable state in a Hopfield

memory equal to one of the pat- hP = Z Z XquXp
terns to be stored: j=1gq=1
Xt + 1) = x(t) = xP. * By taking apart the terms for
* So: which p = gand making use of
xP = g(WiP). xjpxjp = 1one gets:

* The ith neuron obeys: N Q
P — Cy Ay P

) N A hf Nx|p+'z Z XD

= g_zWinj = g[ i]. j=lg=1g=p

j=1 * The output of the ith neuron will

* hlp is called the induced local be stable as |0ng as the abso-

field. Making use of the Heb- lute value of the second term is
bian learning rule: less than N.
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STORAGE CAPACITY (2)

* The second term of the equation, the noise o, can be written as:

Q N Q
- q OyP — a(xP . O
) Z X1 D XX Z xi(x x9).
g=1lg=p j=1 q=1g=p

* So, if all the patterns to be stored were orthogonal, the second term
would always be zero. But the patterns don’t need to be orthogonal.

* Suppose that each of the patterns are random. Then, the average
value for each component is O (the average of 1 and —1) and the
variance is 1.

* The random variable O associated to the entire second term will

have u = 0Oand ¢® = (Q — 1)N. Assumingthat Q > 1, the variance
is: QN.
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STORAGE CAPACITY (3)

* The distribution of the random variable O is binomial, but can be

1 _ 02
e 2NQ.
J/27NQ
* S0, the probability that the second term becomes larger than the first
one is:

Perror = P(O > N|Xip = -1)=P0O< _leip =1)

approximated by a Gaussian with density function

1 _02 1 —r2
P = e 2nodo = = e~ "dr
error T‘[NQJ ‘/J—t j
N

Perror = %[l - eﬂ{ %H, with erf(z) = éje‘yzdy.
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STORAGE CAPACITY (4)

The error function for large z can be approximated by:
z

—72
erf(z) = /%j e Yidy=1- 7{2

0

*

* This means:

Perror = E 2Q an
* The probability for an entire pattern to be stable:

N
1- /2Q e2Q =1-N /ZQ ezo

The second term remains bounded by requiring: — <In

2Q

11—erf[ N] ezo

[1 - I:)error]N =

*

=T
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STORAGE CAPACITY (5)

* The last condition implies: Q <

-2 In N’
* Using a similar reasoning and approximating NQ by N? one finds

that all patterns in the memory are likely to be stable for: Q < ﬁ

For more information consult:

[1] Haykin, S., Neural Networks, A Comprehensive Foundation, Prentice Hall International,
Upper Saddle River, New Jersey, Second Edition, (1999).

[2] Hassoun, M.H. (Ed.), "Associative Neural Memories, Theory and Implementation”, Oxford
University Press, New York, (1993).

[3] Amit, D.J., "Modeling Brain Function, The World of Attractor Neural Networks”, Cambridge
University Press, Cambridge, (1989).
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KANERVA MEMORIES: PRINCIPLES

* Also called sparse distributed space.

memory. * The patterns yP are recovered
by adding and thresholding the
data stored at the locations
close to xP.

* It is heteroassociative; it is
meant to store pairs of patterns

xP,yP), p=1,..,Q.

* The patterns yP are not stored
in a single location of the ad-
dress space corresponding to
xP, but distributed among multi-
ple locations “close” to xP. It is
not even necessary that xPis it-
self a member of the address
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KANERVA MEMORIES: VISUALIZATION

ADDRESS REGISTER WORD-IN REGISTER
1,000 bits 1,000 bits

x* yEis 7%
N 9 U

DRESS MATRIX
M hard addresses

CONTENTS MATRIX
MxU counters

1,000,000 hard locations

<

Hamming distances

Activations (d < 447)

WORD-OUT REGISTER
1,000 bits
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VECTOR DESCRIPTION (1)

* The vectors xP have dimension N. The vector elements are binary
valued but are encoded by —1 and 1 instead of the usual 0 and 1.
* The address space of the memory consists of M locations, M < 2N,

Every address m¥, k = 1,..., M can be represented by a vector of N
elements encoded in the same way as the xP.

* Note that mK - xPis a measure for the distance between the two vec-

tors (not the Hamming distance). mK - xP = N means that the two
vectors have matching elements in all positions (their Hamming dis-
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VECTOR DESCRIPTION (2)

* Collect all the row vectors ponents —1and 1):

-
(mk) in a matrix A. Then Q .
P = @,(AxP) is a column vec- C= > G
tor with elements 0 and 1. The p=1

threshold function @ returns 1
if its argument correspondsto a
Hamming distance less than D

The retrieved data value zfor a
given input x is found from (g is
X ! a threshold function returning 1
(the threshold is applied to all ¢ jis argument is positive and 0
vector elements). otherwise, applied to all vector
* The contents of the memory elements):
are to be found in a matrix C
(the vectors yP also have com- z = g(CTOp(AX)).
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NEURAL-NET IMPLEMENTATION

* From z = g(CTQD(Ax)) it can output signal z using weights
be seen that the Kanerva from CT and limiting function g.
memory can be implemented
by a two-layer feedforward (i.e.
without feedback) neural net-
work.

* The first layer transforms the
input x to an intermediate sig-
nal susing weights from A and
limiting function @p.

* The second layer transforms
the intermediate signal sto an
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COMBINATORIAL OPTIMIZATION WITH
HOPFIELD NETWORKS (1)

* Consider the Lyapunov or energy function of Hopfield networks:

N N

V(x) = — %z Z W;iXiX.-
i=1lj=1

* Minimization of this function by the Hopfield network was proved for
neurons with output values —1 and 1 and the step limiting function.
The energy is also minimized for neurons with a sigmoid limiting
function and output values from 0 to 1 (with the symmetric weight
constraint):

X =9V v ZWU i 9(v) = Tle_av
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COMBINATORIAL OPTIMIZATION WITH
HOPFIELD NETWORKS (2)

* Zero-one quadratic program- 1 N N
ming problems are problems V(X) = — §z ZWinin
with  Boolean variables x; i=1j=1
(i=1,..,N) and a quadratic * So, any problem with a qua-
cost function. A quadratic cost dratic cost function is “solved”
function looks like: by constructing a Hopfield net-
N N work and deriving the weights
c(x) = Z Z CyXiX; w;; from the coefficients c;.
x=1x=1 * The network will converge to a

* The cost function has exactly solution if the c;; are symmetric.
the same form as the energy However, this solution will in
function of a Hopfield network: general be a local optimum.
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EXAMPLE: TRAVELING SALESPERSON
PROBLEM (TSP)

* Definition: find the shortest tour that visit all cities in a given set of
N cities exactly once; the distance between cities i and j is dij

( |J d“)
* Define Boolean variables x,,, i,a = 1,...,N. x;; = 1 means that city
i occurs at position a of the tour.

* A quadratic cost function for this problem is (the first term is the tour
length; the second penalizes illegal solutions; « is a parameter):

N N N N N N
€= Z z d Z XiaXia+ 1modn) T & Z Z z (XiaXip + XaiXpi)

i=1j=1 a=1 i=la=1b=1b=a
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PROBLEMS AND REMEDIES: POTTS
NEURONS

* Finding a local optimum is not enough.

* Constraints are implicitly encoded in the cost function which means
that there is no guarantee that they will be satisfied.

* Potts neurons tackle both problems:

+ The first problem is tackled by borrowing techniques from simu-
lated annealing (in the context of neural nets the terms mean field
annealing and Boltzmann machines are used).

+ The second problem is tackled by updating groups of neurons si-
multaneously.
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POTTS UPDATING RULE

* Consider the induced local field vi, of the neuron with output x;, (as
e.g. usedinthe TSP example). Instead of applying a limiting function
that only depends on v,,, use an updating rule that involves all vi,,

a=1,..,M; (in the TSP example, M; = Nfor all i).

-V

a

_ eT
Xia - M.
N Vg
z eT
a=1
M.

* This rule guarantees that Z Xy = 1.Itis hoped that one of the x;,

a=1

gets close to one and all others close to zero (it does not always
work).

* The parameter T is the “temperature” and is gradually decreased.
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