IMPLEMENTATION OF DSP [] 1
RTL DESIGN WITH ARX 8 February 29, 2024
RTL DESIGN WITH ARX

IMPLEMENTATION OF DIGITAL SIGNAL
PROCESSING

Sabih H. Gerez
University of Twente

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 2
UT. RTL DESIGN WITH ARX 8 February 29, 2024

OUTLINE

Design languages
Arx motivation and alternatives
Main features of Arx
Arx language elements

— Components and functions
— Data types

— Statements

Code generation and simulation

© Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 3
RTL DESIGN WITH ARX ® February 29, 2024
GENERAL PURPOSE VS. DOMAIN-
SPECIFIC DESIGN LANGUAGES

» Should one adopt (and adapt) existing programming languages
for the design of parallel embedded systems, signal processing
systems?

* Yes, because:

— This alleviates the burden of making new compilers,
debuggers, etc.

* No, because:

— One wants to model only the semantics of some domain and
wants to keep the language clean of peculiarities of the host
language.

[] © Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP [] 4
UT. RTL DESIGN WITH ARX 8 February 29, 2024

ON LEARNING NEW LANGUAGES

Reusing an existing (software) language for a specific modeling
domain (hardware) is not necessarily a good idea.

What matters, is mastering the semantics of the domain.

Learning to think in the paradigms of the domain takes much
longer than learning a new programming language.

It is e.g. a mistake to think that one convert a C programmer
into a hardware designer by providing her with a tool that
synthesizes hardware from C.

Edwards, S.A., The Challenges of Synthesizing Hardware from C-Like
Languages, |IEEE Design and Test of Computers, pp. 375-385,
(September/October 2006).

© Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP L 5
RTL DESIGN WITH ARX 8 February 29, 2024
THE LANGUAGE SUBSET ISSUE

* When an existing language is used for describing models in a
new domain, one is confronted with the fact that not all
language constructs make sense in the application domain.

» One necessarily needs to isolate a language subset that should
be used.

« This is true for e.g. C.

« But also for VHDL, originally a simulation language, later used
for synthesis.

* And also for Matlab for the purpose of HDL Coder.

IMPLEMENTATION OF DSP L 6
RTL DESIGN WITH ARX 8 February 29, 2024
DOMAIN-SPECIFIC LANGUAGES

» Languages specifically designed for well-defined, constrained,
modeling are called domain-specific languages.

» No design mistakes due to subset violations: all language
constructions are meaningful in domain.

» Tools such as parsers can be kept simple as they only need to
deal with a small language rather than a large and complex
one.

[] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
. IMPLEMENTATION OF DSP L] 7 . IMPLEMENTATION OF DSP . 8
UT RTL DESIGN WITH ARX B February 29, 2024 UT RTL DESIGN WITH ARX B February 29, 2024
DATA-FLOW LANGUAGE EXAMPLE:
DATA-FLOW LANGUAGES SILAGE

+ Idea: specify data-flow graphs using text.

« Example feature: the single-assignment property, a variable is
only assigned a value once.

« This means that, after conversion into a DFG, the variable can
be associated to the output of a single vertex.

» Because of single assignment, ordering of statements is not
relevant.

» Think also of VHDL: a process should in principle write a signal
only once (unless it contains wait statements).

» They can have syntactic support for typical data-flow elements
such as the delay node.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

z[n])

bO0*x + z2@1

<
il

b2 3 b

by

O DuOx®0 zied
Z1 z9

z1l a2*y + b2*x

OO
ao a1 y[n]
D

Hilfinger, P.N., "A High-Level Language and Silicon Compiler for Digital Signal
Processing", Custom Integrated Circuit Conference, pp. 213-216, (1985).

z2 al*y + bl*x +

[] © Sabih H. Gerez, University of Twente, The Netherlands []

. IMPLEMENTATION OF DSP . 9
U T RTL DESIGN WITH ARX ® February 29, 2024
RTLINC

* Voluntarily stick to single-assignment code.

» Use static variables for registers and read these values before
writing them (initial value = reset value).

T out sec(T_in x) {
static T reg zl1 = 0;
static T reg z2 = 0;

One function call advances
one clock cycle.

y = b0*x + z2;
z2 nxt = al*y + bl*x + z1;
zl_nxt = a2*y + b2*x;

. IMPLEMENTATION OF DSP . 10
U T RTL DESIGN WITH ARX B February 29, 2024
RTL IN MATLAB

function y = sec(x)

persistent zl1; }
persistent z2;

if 1s_empty(zl) 1 BB A ”
21 = £i(0, T reg); Check for “not initialized

22 = £i(0, T reg); needs to be used to specify
end reset values!

Equivalent of static in C

y = £fi(b0*x + z2, T out);
zl nxt = fi(al*y + bl*x + z1, T req);
z2_nxt = fi(a2*y + b2*x, T req);

z2 = z2 nxt; zl = z1_nxt; // register update Can this go :; E ; : :;—22::
return(y) ; =
} wrong? end
a © Sabih H. Gerez, University of Twente, The Netherlands |] |] © Sabih H. Gerez, University of Twente, The Netherlands a
IMPLEMENTATION OF DSP a 1" IMPLEMENTATION OF DSP] 12

RTL DESIGN WITH ARX B February 29, 2024 RTL DESIGN WITH ARX B February 29, 2024

PRACTICE IN SYSTEM-LEVEL-TO-RTL

C-BASED HARDWARE DESIGN
TRANSITION « Arguments in favor of C-based design:
abstract System models — Everybody knows C; we don’t want to teach new languages.
often described in — Lots of legacy C code.
System C or Matlab — High execution speed.
Level — * Many commercial products based on translation from
Costly manual C/C++/SystemC including:
translation — Catapult (Siemens)
(months) — Stratus (Cadence)
RT Level — Vivado (Xilinx/AMD)
Hardware models — Intel HLS Compiler (Intel/Altera, front-end to Platform Designer/Quartus)
in VHDL — CyberWorkBench (NEC System Technologies)
concrete » See for more: https://en.wikipedia.org/wiki/High-level synthesis

[] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 13
RTL DESIGN WITH ARX 8 February 29, 2024
GRAPHICAL DESIGN ENTRY

* Many solutions based on dedicated blocksets to be used in
Simulink:

Mathwork’s HDL Coder (from graphics and text source)

Synphony Model Compiler (Microsemi)

Xilinx System Generator for DSP

Intel DSP Builder

» Graphical design entry can be cumbersome compared to text-
based entry:

— One does not always want to instantiate an adder for every addition, a
multiplexer for every if-statement, etc.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP] 14
RTL DESIGN WITH ARX 8 February 29, 2024
DOMAIN-SPECIFIC DESIGN
LANGUAGES

 All language constructs make sense in domain:

— Entire language is synthesizable.

— Designer does not need to bother about allowed subsets.
 Straightforward language constructions:

— Improve designer efficiency.

— Lead to elegant designs.
« Examples:

— GEZEL (university tool, https://sourceforge.net/projects/gezel/)

Schaumont, P., D. Ching and |. Verbauwhede, An Interactive Codesign Environment for Domain-
Specific Coprocessors, ACM Transactions on Design Automation of Electronic Systems, Vol.11(1),
pp- 70-87, (January 2006).

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 15
RTL DESIGN WITH ARX 8 February 29, 2024
ARX: A DOMAIN-SPECIFIC RTL
LANGUAGE

Domain-specific = One language (Arx) for multiple

RTL language: Arx levels.
= Developed at University of Twente.

= Arx eliminates manual translation

/
| Functional | from C to VHDL! .
N = Correct by construction.

\ 4 Verification

[Bittue H C+ with C-based
generator simulation
A\ 4
Bit-true and VHDL

clock-cycle-true

generator

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 16
UT. RTL DESIGN WITH ARX 8 February 29, 2024

ARX EXAMPLE

component accumulator
wl: generic integer = 10 Clock and reset are
T_in : generic type = signed(wl , 1} i iCl
T_out: generic type = signed(wl-2, 1, sat, round] ImpIICIt'

T_sum: generic type
clear: in bit

signed(wl+s, 6)

data_in : in T_in
data_out: out T_out -
ata_ - > £
variable 5 r
sum: T_sum v
: >
register -EI D » »
r: T_sum = 0 8
o= I}
begin L]
if clear =1 + 5
sum = data_in S
else g
sum = r + data_in clear o
end
r o= sum
data_out =r
end
[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 17
RTL DESIGN WITH ARX ® February 29, 2024
LANGAUGE FEATURES

« Explicit distinction between wires and registers.
 Implicit clock and reset.

» Generic data types allowing propagation of data types down
hierarchy (e.g. floating-point to fixed-point refinement).

« Data types for DSP, especially fixed-point data types.
— Support for overflow and quantization modes.
— Efficient simulation of fixed-point data types.

* No semicolons!

« Simple: can be learned in one day!

IMPLEMENTATION OF DSP] 18
UT. RTL DESIGN WITH ARX ® February 29, 2024

ON-LINE FEATURES m

* Please visit:

www.bibix.nl

» The website gives access to:
On-line wiki-style manual,

Web-based demonstration (upload Arx, download corresponding C++
and VHDL),

An IP library of basic blocks: FIR filter, CORDIC, FFT, etc.
— A GFSK receiver.

» Feedback on Arx, requests for cooperation, very welcome.

[] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP a 19 IMPLEMENTATION OF DSP n 20
UT RTL DESIGN WITH ARX B February 29, 2024 UT RTL DESIGN WITH ARX B February 29, 2024

IMPRESSION ARX MANUAL

Digital Design,
Design Automation, Algorithms

N
IPIX

[[[T (e e [[[T

Introduction | Syntax | Components | [BEIEMNEE) Statements | Expressions || Functions || Simulation

Trace: - main - component - datatypes
Table of Contents

+ Arx Data Types
- Scalar Data Types
- Vector Data Types
- Quantization and Overflow in Fixed-Point Data Types
- Enumeration Data Type
- Arrays
+ Explicit Type Conversion
- Reinterpretation

Arx Data Types

[] © Sabih H. Gerez, University of Twente, The Netherlands []

PUBLICATIONS

« Hofstra, K.L. and S.H. Gerez, "Arx: A Toolset for the Efficient Simulation and
Direct Synthesis of High-Performance Signal Processing Algorithms”,
International Conference on High Performance Embedded Architectures and
Compilers, Ghent, Belgium, (January 2007).

* Hofstra, K.L., S.H. Gerez and D. van Kampen, "A Language and Toolset for
the Synthesis and Efficient Simulation of Clock-Cycle-True Signal-
Processing Algorithms", 16th Annual Workshop on Circuits, Systems and
Signal Processing, ProRISC 2005, Veldhoven, The Netherlands, (November
2005).

+ Kampen, D. van, K.L. Hofstra, J. Potman and S.H. Gerez, "Implementation
of a Combined OFDM-Demodulation and WCDMA-Equalization Module”,
Annual Workshop on Circuits, Systems and Signal Processing, ProRISC
2006, Veldhoven, The Netherlands, (November 2006).

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP] 21
RTL DESIGN WITH ARX 8 February 29, 2024
THE ARX LANGUAGE: BUILDING
BLOCKS

« Components
— Same as entities (VHDL), modules (Verilog/SystemC)
— Contain sequential logic

— Can be instantiated inside other components (hierarchical descriptions
are allowed)

— In current version: entire design in one file.

* Functions:
— Contain only combinational logic

— In current version: not supported in VHDL generation (you need to write
the VHDL function by hand)

IMPLEMENTATION OF DSP L 22
RTL DESIGN WITH ARX 8 February 29, 2024
- EXAMPLE: COMPONENT INSTATIATION

componeni: reg
word length: generic integer = 8

T_TO : generic type = bitvector (word length)
data in : in T IO component top
data out : out T IO word_length: generic integer = 12
- - T_topIO : generic type = bitvector (word length)
register gataiint f intTEtEpI?O
storage : T IO =0 e e B GRS t_Eep
A variable
begin data_internal: T topIO
storage = data in
data out = storage generate
end - rl: reg
T I0 = T topIO
data_in => data_in

data out => data internal

r2: reg
word length = word length
data_in => data internal
data_out => data_out

Restriction: the top-level
component in Arx needs

to be called top. S
ena ' S -
[] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP n 23 IMPLEMENTATION OF DSP] 24
UT RTL DESIGN WITH ARX B February 29, 2024 UT RTL DESIGN WITH ARX B February 29, 2024

ARX DATA OBJECTS

* Registers:
— They store data are updated at the end of clock cycle.
— Assignment is concurrent.

» Variables:
— Correspond to wires.
— Assignment is sequential (“single assignment” not required).

[] © Sabih H. Gerez, University of Twente, The Netherlands []

DATA TYPES

» Scalar types:
— bit
boolean
integer
— real
» Enumerated types (e.g., for state specification)

» Vector types:
— bitvector
— signed
— unsigned

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 25
RTL DESIGN WITH ARX 8 February 29, 2024
FIXED-POINT DATA TYPES

» Refinement of signed/unsigned:

» By supplying additional optional arguments for:
— Integer word length
— Overflow mode
— Quantization mode

+ Examples:
— signed(8)
— unsigned(8, 3): fixed-point with 5 fractional bits, wrap-around for
overflow, truncate for quantization
— unsigned(8, 3, saturate, round)

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 26
RTL DESIGN WITH ARX 8 February 29, 2024
FIXED-POINT SUPPORT

» Use of fixed-point data type implies automatic code generation
for:
— Binary-point alignment
— Sign extension
— Handling of overflow and quantization mode.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 27
RTL DESIGN WITH ARX 8 February 29, 2024
EXAMPLE: USE OF CONSTANTS

register

thr reqlsters initialized with the same value

bvall: bit%ector(S) = 0bl0101010
bval2: bitvector(8) = Ohaa
bval3: bitvector(8) = 170

bvald4: unsigned(8)
bval5: unsigned(8,2) 1.75 # no
bvalé: signed(8, 2) =1.5
bval7: signed(8,4) = 3.14 #

Ohaa

[

IMPLEMENTATION OF DSP L 28
UT. RTL DESIGN WITH ARX 8 February 29, 2024

EXAMPLE: ENUMERATION DATA TYPE

type
input state = enum(start, processing, ready)

a registered signal ol type 1nput state witn 1ts rese value

registér
current state: input state = input state.start

later on in the code

begin

[] © Sabih H. Gerez, University of Twente, The Netherlands

if current state == input state.start
current state = input state.processing
end
[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 29
UT. RTL DESIGN WITH ARX 8 February 29, 2024

EXAMPLE: ARRAYS

component top

T IO : generic type = signed (10, 5, sat, round)
data in : in T IO
data out : out T IO

type

T enum: enum(one, two, three)
T arl: array[3] of T IO
T ar2: array[3] of T enum

register
vl : T arl = 0
v2 : T ar2 = {T enum.three, T enum.two, T enum.one}

v3 : array[5] of T IO = {5, 4, 3, 2, 1}

IMPLEMENTATION OF DSP L 30
RTL DESIGN WITH ARX 8 February 29, 2024
EXAMPLE: CASE STATEMENT

case output state
when out state.start
if start of processing
output state = out state.processing
end
when out state.processing
if end of processing

begin
v1[1] - data in output state = out state.ready
for 1 in 0:1 - —
v2[i] = v2[it1] end
i L I else # default case; no action
v3[0][0:4] = v1[2][5:9] end
v3[0][5:9] = v1[2][0:4]
[] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP] 31 IMPLEMENTATION OF DSP] 32
UT. RTL DESIGN WITH ARX B February 29, 2024 UT. RTL DESIGN WITH ARX B February 29, 2024

FOR STATEMENT

Iteration based on an index variable
— Index can only be incremented by 1

Specifies iteration in space not in time (as in e.g. VHDL).

Example:
for i in 1l:half size

delay group[i] = delay line[half size-i] + delay line[half size+i]
end

© Sabih H. Gerez, University of Twente, The Netherlands

CODE GENERATION

« Based on data-flow analysis & static scheduling.

» C++-code generation (targeted for fast simulation):
— Flattens description
— Maps fixed-point data types on integers (limited to 64 bits)
— C++ object with:
« reset method
- run method to simulate one clock cycle
— Optional VCD generation for waveform viewing (now: all or none)

» VHDL-code generation (targeted for synthesis):
— Preserves component hierarchy

[] © Sabih H. Gerez, University of Twente, The Netherlands

. IMPLEMENTATION OF DSP . 33
UT RTL DESIGN WITH ARX ® February 29, 2024
C++ TESTBENCH IN IT++

» The C++ generated by Arx will need a testbench to be executed
with.

« Any C++ code could be used.

 In current projects, the testbench makes use of IT++:
https://itpp.sourceforge.net/4.3.1/

« |T++ provides Matlab-style data structures (vectors & matrices)
and links with powerful math libraries to deliver efficient
execution speeds.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

. IMPLEMENTATION OF DSP . 34
U T RTL DESIGN WITH ARX B February 29, 2024
SUMMARY

» A domain-specific language for the RTL MoC, e.g. Arx, bridges
wall when descending from the system level.

» Arx brings about that one source code generates:
— C++-based simulation model optimized for simulation speed
— VHDL code for synthesis.
* The Arx approach:
— Saves manual recoding time!
— Is correct by construction!

[] © Sabih H. Gerez, University of Twente, The Netherlands []

