IMPLEMENTATION OF DSP - 1
CODE GENERATION a March 26, 2021
CODE GENERATION

» Translation of software in high-level code (like C) to machine
instructions

» Based on (second part of) following paper:

Bhattacharyya, S.S., R. Leupers and P. Marwedel, Software Synthesis
and Code Generation for Signal Processing Systems, IEEE Transactions
on Circuits and Systems---Il, Analog and Digital Signal Processing,
Vol.47(9), (September 2000).

[| © Sabih H. Gerez, University of Twente, The Netherlands [|

. IMPLEMENTATION OF DSP [2
UT CODE GENERATION March 26, 2021
TOPICS

» Typical programmable DSP

« Traditional compilation techniques
» Sequential code generation

* Memory-access optimization

» Code compaction

[] © Sabih H. Gerez, University of Twente, The Netherlands []

. IMPLEMENTATION OF DSP] 3
UT CODE GENERATION] March 26, 2021
WHY DIFFICULT?

» Code generated for C compilers for PDSPs (programmable
digital signal processors) is several factors slower than
assembly code.

* Reason: PDSPs have a data path that is less regular than
conventional processors (more parallelism, special-purpose
registers).

a © Sabih H. Gerez, University of Twente, The Netherlands a

IMPLEMENTATION OF DSP] 4
UT CODE GENERATION a March 26, 2021

TEXAS INSTRUMENTS TMS320C25

F
* Features: data RAM
(256 x 16)

address
— Address generation unit rc:gl:'a‘e;)me
(AGU)

— Temporary register (TR)
_ i e 16 16 16
Product register (PR) e I
— Accumulator (ACCU) ;\ﬁ 4
16
— Multiply-accumulate “‘“""“"”7 @
instruction program bus Efg ALU
controller 32
coniete] s [Rcc0]
rogram ROM
TI TMS320C25 dates ” (9056 x 16) I
from 1987-1990 -
data bus

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP] 5
UT CODE GENERATION a March 26, 2021

TRADITIONAL COMPILATION PROCESS

@ource progra@
o 1
source code optimized intermediate
analysis representation

—

intermediate
representation (IR)
—

I_l

code generation

I_‘

6

IMPLEMENTATION OF DSP .
CODE GENERATION .
SOURCE-CODE ANALYSIS

* Lexical analysis:
— Group characters into tokens.
— Can be automated by programs like 1lex (flex).

+ Syntax analysis:
— Apply grammar rules and identify constructions.

— Results in syntax tree, a data structure explicitly showing expressions,
statements (conditionals, loops).

— Can be automated by programs like yacc (bison).

March 26, 2021

— b + Semantical analysis:
machlne-llnFiep.endent assembly — l|dentify scopes of variables, etc.
IR optimizations program
|
[| © Sabih H. Gerez, University of Twente, The Netherlands [| [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP] 7 IMPLEMENTATION OF DSP | 8
UT. CODE GENERATION] March 26, 2021 UT. CODE GENERATION | March 26, 2021

TRADITIONAL MACHINE-INDEPENDENT
IR OPTIMIZATIONS

Constant folding:
— Simplify constant expressions.
» Common-subexpression (CSE) elimination:
— Calculate CSEs only once.
* Loop-invariant code motion:
— Move code outside loop, when code does not depend on loop state

» Etc.

a © Sabih H. Gerez, University of Twente, The Netherlands a

TRADITIONAL MACHINE-DEPENDENT
IR OPTIMIZATIONS

* Code selection:

— Select a minimum set of instructions to implement IR primitive.
* Register allocation:

— Select registers for storage of intermediate results.
* Instruction scheduling:

— Order the selected machine instructions.

— Avoid spill code, moving values from registers to memory and back due
to insufficient number of registers.

a © Sabih H. Gerez, University of Twente, The Netherlands

9

IMPLEMENTATION OF DSP .

CODE GENERATION -

PROBLEMS OF TRADITIONAL
APPROACH

* lIrregular register location:
— Better combine register allocation with code selection.
* Instruction-level parallelism (ILP):
— Many instructions can be scheduled simultaneously.
— Opportunities for code compaction.

March 26, 2021

[| © Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP a 10
CODE GENERATION a March 26, 2021
PROPOSAL FOR CODE GENERATION

» Sequential code generation:

— First ignore parallelism.
* Memory-access optimization:

— Code for AGU.

— Partition variables across multiple memories, accessible in parallel.
» Code compaction:

— Try to merge sequential code into instructions.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

11

IMPLEMENTATION OF DSP .
CODE GENERATION -
SEQUENTIAL CODE GENERATION

* Represent computation to be compiled by data-flow trees
(DFTSs) or data-flow graphs (DFGs)

* Represent instructions by small DFTs: instruction patterns

» Try to optimally cover the computation graph by instruction
patterns.

» Pay attention to registers (represent individual registers
explicitly in register patterns).

March 26, 2021

a © Sabih H. Gerez, University of Twente, The Netherlands

int a,b,c,d,x,y,z;

void f£()

{

IMPLEMENTATION OF DSP . 12
CODE GENERATION a March 26, 2021
EXAMPLE OF DFG COVERING

+LoAD N, TN

X =a - b;
y=a-b+c*d;
z =c¢c * d;

]

\ sToRE / \ STORE ./
‘__I ‘_"

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP [] 13

UT. CODE GENERATION] March 26, 2021
-~ N - T~ N

l0ap >, . LoD~ S

14

IMPLEMENTATION OF DSP .
CODE GENERATION .
DFG-TO-DFT CONVERSION
<D <D
* Reduces covering

complexity at the O o

March 26, 2021

i

Use of MAC expense of
does not help as optimality Serte GSE. e GSE
result of T
multiplication is L '
.]
also needed. Croadcse > Croad oS !
: e ® '
¢ \ read CSE read CSE
QD] G) :
\ ? !
STORE + \ STORE + \ STORE
> -~ - ~ ~ 4
--7 S S (store x) Catore y) Getore 2)
[] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP] 15 IMPLEMENTATION OF DSP n 16
UT CODE GENERATION] March 26, 2021 UT CODE GENERATION | March 26, 2021

REGISTER-SPECIFIC PATTERNS

data RAM

address 256 x 16
register ﬂle ¢)
(8 x 16)

accu: PLUS (accu, mem)

accu: PLUS (accu, pr)

exchange

16 N
\ multiplier /

program bus

bus I /{/16 16

PR

controller I’ 32

program ROM
(4096 x 16)

data bus

a © Sabih H. Gerez, University of Twente, The Netherlands

MEMORY BANK PARTITIONING

* Many DSP families not only have separate data and program

memories (Harvard architecture), but two data memories often

called Xand Y.

» Assigning data to either X or Y is an optimization problem:

— Data to be accessed at the same time should reside in different
memories.

a © Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP] 17
UT CODE GENERATION a March 26, 2021

FREESCALE/MOTOROLA/NXP DSP56600

IMPLEMENTATION OF DSP] 18
UT CODE GENERATION a March 26, 2021

ADDRESS-GENERATION UNIT (AGU)

X Data Bus . immediate value
Y Dol Bus * [nstructions:
P Data Bu _ AR Ioad AR . . MR . .
16 16 ointer nter
— MR load P . ,
Example of X — AR modify E
architecture = — Auto-increment :
supporting D — Auto-modify
multiple data T « Zero-cost: :
buses I * Pipline Register | — Means address modify |
ET O computation register |
Bit Field Unit 40 : - . '
and Barrel Shifter @ para||e| to other file :
: 40 instruction ~ TTTTTTTTTTomTomomoomomsosmomsmssossessesoceos '
.56000 Ser!es' Start 0| 40 40 an[fﬂoundiln;; Unit AGU
in 1986, still in use
[] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP (] 19 IMPLEMENTATION OF DSP] 20
UT CODE GENERATION [March 26, 2021 UT CODE GENERATION] March 26, 2021
LOAD AR,1 b LOAD AR, 3 b LOAD AR, 3 b
AR +=2 d AR - d AR - d
. AR-=3 a AR - a AR -- a
+ Itis a good idea to maximize zero-cost operations by a clever AR+=2 ¢ . AR — c . AR - ¢
. n a R . JRp A _ > t ma e A
storage of values in memory: T AR++ d 1 Z— AR4+=2 d o LOAD MR, 2
. e . 1 b | AR-=3 a a | AR- a 1 _a AR+=MR d
— Find a Hamiltonian path in access graph. 2| ¢ AR +=2 ¢ 2 d AR - c 2| d AR - a
3 d | AR~ b 3. b | AR+=3 b 3] b AR - c
. . AR - a AR =2 a AR +=3 b
+ Example on next slide has one AR available. AR+=3 d AR ++ d AR-=MR a
AR-=3 a AR - a AR ++ d
AR+=2 ¢ AR - c AR - a
. AR ++ d . AR +=2 d . AR~ c
cost: 9 cost: 5 cost: 3 AR+=MR d
Without Optimal assignment Optimal assignment
optimization for auto-increment with additional auto-
auto-decrement only modify
a © Sabih H. Gerez, University of Twente, The Netherlands a a © Sabih H. Gerez, University of Twente, The Netherlands a

IMPLEMENTATION OF DSP - 21
CODE GENERATION a March 26, 2021
MAXIMUM HAMILTONIAN PATH

» Construct access graph:
— Weighted graph
— Weight is number of accesses neighboring in time

IMPLEMENTATION OF DSP] 22
UT CODE GENERATION a March 26, 2021

CODE COMPACTION

* Process of merging instructions to exploit the parallelism
present in the PDSP.

» Variant of “resource-constrained scheduling”.

* One needs to take into account:

Data dependencies: no read of variable before write.
Anti-dependencies: no overwrite before last read.

Output dependencies: no simultaneous write to same location.
Incompatibility constraints: hardware limitations, instruction-format

restrictions.
[] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP [] 23 IMPLEMENTATION OF DSP [| 24
UT CODE GENERATION [] March 26, 2021 UT CODE GENERATION [] March 26, 2021
LT ar // TR = ar LARK 5 // load AR with &ar
int . br bi . MPY br // PR = TR * br T;gm: 4///31‘1; , (ebr)
int ar,ai,br,bi,cr,c1; _ . - = r
’ r ’ ’ 7 PAC // ACCU = Pl'? O Cl MPY *+ // PR = TR * br, AR++ (&ai)
cr = ar*br - ai*bi; LT ai // TR = ai LTP *+ // TR = ai, ACCU = PR, AR+
MPY bi // PR = TR * bi 1 br (sbi)
ci = ar*bi + ai*br; SPAC // ACCU = ACCU — PR 2 ’li MPY *+ // PR = TR * bi, AR++ (&cr)
SACL cr // cr = ACCU A SPAC // ACCU = ACCU — PR
_ 3 b SACL *+ // cr = ACCU, AR++ (&ar)
MPY bi // PR = TR * bi 4 SBRK 2 // AR — = 2
PAC // ACCU = PR Cr MPY *— // PR = TR * bi, AR—— (&ai)
LT ai // TR = ai = LTP *— // TR = ai, ACCU = PR, AR——
MPY br // PR = TR * br © at (&br)
- MPY *— // PR = TR * br, AR—— (&ci)
APAC // ACCU = ACCU + PR APAC // ACCU = ACCU + PR
SACL ci // ci = ACCU SACL * // ci = ACCU
a © Sabih H. Gerez, University of Twente, The Netherlands a a © Sabih H. Gerez, University of Twente, The Netherlands a

IMPLEMENTATION OF DSP - 25
CODE GENERATION a March 26, 2021
ARCHITECTURAL SCOPE FOR
PROCESSOR DESIGN

« Data types

* Arithmetic functions

* Memory organization (von Neumann vs. Harvard)
* Instruction format (encoded vs. orthogonal)

» Registers (homogeneous vs. heterogeneous)

* Instruction pipeline

» Control flow

IMPLEMENTATION OF DSP a 26
CODE GENERATION a March 26, 2021
RETARGETABLE CODE GENERATION

* Processor model is external to compiler.
* Low effort to adapt to new processor architectures.
* Helps to speed up design-space exploration:

— Applications can be compiled for many processor variants;

— Performance of each variant (area, speed, power) can be evaluated
relatively easily.

The University of Twente has licenses for:

Synopsys ASIP Designer

(the new name of the Target tool suite as presented in [Goo05]).

[] © Sabih H. Gerez, University of Twente, The Netherlands []

[] © Sabih H. Gerez, University of Twente, The Netherlands []

. IMPLEMENTATION OF DSP] 27
UT CODE GENERATION] March 26, 2021
ASIP DESIGNER FLOW

& e

(=] ser Defvet v
o | Architecture Algorithm
ClC++
Processor Model v
Ml Architectural Optimization Hardware Generation
and Software Development
RTL Generator
Op g omp
Link v
Set T Synthesizable RTL
VHDL|Verilog
m_ v
v
f ebugge on Se RTL Simulator RTL Synthesizer
& Profile ato vcs DC - Synplify
@ SDK Generation
o Architectural Optimization Virtual Prototyping Verification V
© Hardware Generation ESL Model o R R gl Verification Model [\ S g @
SystemC. SystemVerilog
© Verification

[] © Sabih H. Gerez, University of Twente, The Netherlands []

. IMPLEMENTATION OF DSP [28
UT CODE GENERATION [March 26, 2021
RISC-V

* Open-source processor model standardized at the level of
instruction set.

* Many variants.

* Instruction set can be extended.

» Atool like ASIP Designer can be very useful to design a custom
instruction-set extension.

— Versions in nML available to start with.

— For each variant explored, the matching compiler is immediately
available to evaluate the variant.

» There are also many open-source implementations in HDL
(VHDL or Verilog).

a © Sabih H. Gerez, University of Twente, The Netherlands a

