## English Summary of the Report in Dutch An Analysis of the "Memory" Game, 65-Afternoon Project Report, University of Twente, Department of Electrical Engineering, 1983.

Sabih H. Gerez

July 30, 1992 (letter addressed to Uri Zwick) August 23, 2003 (new typesetting)

## 1 Context

The summary below is actually a letter that I addressed to Uri Zwick in 1992. I had contacted him after reading about his work in the *Scientific American* [1] and telling him about a student project that I had performed back in 1983 under the supervision of Dr. Frits Göbel. We had independently discovered similar results as mentioned in the Scientific American.

Uri Zwick sent me a draft of [2]. I reacted by sending him my student-project report (handwritten, in Dutch) and a summary in English. That reaction is reproduced below. The correspondence resulted in the report being mentioned in the final version of [2]. The report in Dutch is available through my website http://utelnt.el.utwente.nl/links/gerez/.

## 2 Letter

Dear Uri,

Below I will present a summary in English of my 65-afternoon project report and I will point out some relations with the material presented in your paper "The Memory Game".

- Chapter 1 gives is an introduction: it presents the project description and the structure of the report.
- Chapter 2 describes the memory game as it will be analyzed, i.e. with perfect memory.
- Chapter 3 begins with an introduction to the notion of dynamic programming (Section 3.1).
- Next follows the definition of the "state vector" (Section 3.2.1), which is defined as a triplet  $\langle K, B, P \rangle$ . Here K represents the number of cards present in the game (always an even number,

it corresponds to 2n in your notation), *B* represents the number of cards whose identity is known (*k* in your notation) and *P* is the number of cards whose identity is known together with the matching card (they can be picked up by the player that has the turn; you don't consider these configurations, but I wanted to start with a formulation that is as general as possible). The inequality at the end of Page 8 states that there is an upper bound for *B* that is the average of *K* and *P*.

- Section 3.2.2 introduces the gain function, denoted by w(K, B, P). As opposed to your function  $e_{n,k}$ , this function is always positive and simply gives the expected number of cards that a player will have when continuing the game from the configuration  $\langle K, B, P \rangle$ . The general expression presented just below the middle of Page 9 simply states that the expected gain is the sum of the expected gains reached from the states after picking up two cards weighted by the probabilities to reach them and those that will make it necessary to switch turns with the other player (again weighted by the correct probability). Using our gain function, one has to take the function's complement with respect to K when losing the turn. Using the notation  $w_i(K, B, P)$  for the expected gain using move *i*, in Page 10 it is stated that the expected gain in a certain state is the maximum of the  $w_i$ 's, while the *i* that corresponds with the maximum, is the best move.
- In Section 3.3.1 an attempt is made to classify all possible moves ("tactics"), not excluding those that might not look clever. On Page 11 the sets  $K_1$  and  $K_2$ , representing the possible moves for Ply 1 and Ply 2 respectively, are introduced.  $K_1$  consists of: "pick up a card that has a known matching card", "pick a known card without matching card" and "pick an unknown card".  $K_2$  contains these plus the move "pick up the known card that matches the card of Ply 1". There two categories of moves: *unconditional* moves in which the decision for Ply 2 is independent of the result of Ply 1 and *conditional* moves in which the decision is dependent.
- Section 3.3.2 shows how to compute the expected gain of some example moves. Section 3.3.3 introduces all possible moves, preceded by a table that defines the probabilities  $p_1$  through  $p_9$ , which are used in the expressions for the expected gain of the different moves. Besides, for each move, the states in which it can be applied, are specified. I will only explain the moves that are relevant for the rest of the report.
  - $T_1$  collects a pair of matching cards.
  - $-T_2$  picks up a pair of known nonmatching cards and amounts to a "pass".
  - $T_4$  picks up an unknown card together with a known card (the order does not matter as this is an unconditional move).
  - $T_5$  picks up an unknown card and the matching card if there is one; it picks up a known card in Ply 2 otherwise. This corresponds to your "1-move".
  - $T_6$  picks up an unknown card and the matching card if there is one; it picks up an unknown card in Ply 2 otherwise. This corresponds to your "2-move".
  - $-T_7$  picks up two unknown cards.
  - $T_8$  starts with an unknown card; if it matches with another card, a known but *nonmatching* card is played in Ply 2; an unknown card is played otherwise.
- Sections 3.4 deals with the order in which the states have to be traversed to compute the optimal moves and expected gains. Section 3.5 gives an expression for the number of different states for *K* ≤ *k<sub>max</sub>*.

- Section 3.6 presents the results of the computer simulations. Two different variations on the game have been considered. In the first variant  $T_2$  can be applied (when there are two known nonmatching cards); in the second variant  $T_2$  has been disallowed (one can imagine that an extra rule states that the game can only finish when there are no cards left to be picked up, and that move  $T_2$  is therefore not allowed). It turned out that move  $T_1$  is always optimal when P > 0. Therefore only the optimal moves for P = 0 are presented. They are displayed on Pages 23 and 24 respectively for the two variants. The first table is essentially the same as Table 2 in your paper, with the exception that the anomaly for n = 6, k = 1 is absent. Is this a mistake I made during copying the results into the report? Perhaps I can find home the computer outputs of those days and check it. The second table gives a remarkable result:  $T_8$  which leaves a matched pair for the opponent appears as the winning move in some states (a move comparable to a sacrifice in chess?). Note also that there are many anomalies for small values of K and B.
- Section 3.7 tries to supply some theoretical foundations for the results. In the second part of Section 3.7.1 a proof is given for the fact that  $T_1$  is always optimal in the cases that it can be applied. It assumes that  $T_x$  is better than  $T_1$  in a certain state and then derives a contradiction by showing that applying first  $T_1$  and then  $T_x$  never gives a smaller expected gain. A problem arises only with  $T_2$  as it cannot always be interchanged with  $T_1$  (see the example mentioned at the end of Page 29): this gives rise to consider a variant of the game where "passing" is allowed in all states, as you also mention in Section 5 of your paper.
- Section 3.7.2 investigates the diagonals of the tables. A new variable N is introduced; each value of N selects another diagonal:  $B = \frac{K}{2} N$  or  $N = \frac{K}{2} B$ . The analysis of N = 0 is trivial. For N = 1 the expected gain for the empirically found optimal move  $T_6$ ,  $w_6(K, \frac{K}{2} 1, 0)$ , is given a closer look and the difference equation that results is solved. The result is shown at the beginning of Page 32:  $\frac{K+4}{3}$ . It is then shown that for K = 8,  $T_2$  gives the same gain and becomes superior for higher values of K. It is also shown that no other move can be superior to  $T_2$  for larger K by induction (only the comparison with  $T_5$  is elaborated). For the case that passing is not allowed, similar computations are performed and the transition to  $T_8$  is proved.
- In Section 3.7.3 an attempt is made to prove that  $T_5$  is superior to  $T_4$ . It turns out that the proof would be easy if passing was allowed unconditionally. This is another reason for giving special attention to the game with unconditional passing in Chapter 4.
- Section 4.1 eliminates most of the moves, viz.  $T_4$ ,  $T_3$ ,  $T_9$ ,  $T_8$  and  $T_7$ , by proving that either  $T_5$  or  $T_6$  is better. The application areas of  $T_5$  and  $T_6$  have to be enlarged to justify the elimination of some of those moves.
- Section 4.2 presents the results of the new computer simulations. Note that the table on Page 41 is exactly the same as your Table 5 and the one of Page 42 is the same as your Table 4 (you need to read the tables "mirrored" as the parameter N is used in my tables, and you should add n to the gain in your table).
- Section 4.3 tries to prove the results theoretically. In Section 4.3.1 an exact expression for  $w_5$  is derived for N = 2. It is also mentioned that it is not difficult to see that  $T_5$  will always be the better than  $T_2$  (coefficient of K) and  $T_6$  (induction proof).
- In Section 4.3.2 a so-called "coefficients of the highest power calculus" is introduced. It mainly lists in pairs the exponents of the variable together with its coefficients in decreasing order of the exponent. It will make it possible to approximate the behavior of the expected gain of moves by only considering the first two terms of the solutions.

• This calculus is applied to different values of N in Section 4.3.3. The last part of this section is the most interesting, as expressions for the expected gain are derived for general values of N, when N is even and odd respectively. When N is even,  $T_5$  is the optimal move. Assuming that  $T_2$  is the optimal move in the preceding column (corresponding to N - 1), and using Theorem A.2, the following approximation is found on Page 52:

$$w_5(K, \frac{K}{2} - N) \simeq \frac{(N+1)K - N}{2N+1}$$

I have checked that this is the same expression as the first one given in Theorem 3.2 of your paper. For N is odd, two assumptions are made: that  $T_2$  is the optimal move two columns before (N-2) and that the result found for  $w_5$  holds for the previous column (N-1). The expression found for  $w_6$  predicts the transitions between  $T_6$  and  $T_2$ . As stated on Page 54, K = 6N + 2 gives the site of the transition. This corresponds to your expression  $k \leq \frac{2n+1}{3}$  given in Theorem 3.2 of your paper.

- Section 4.3.4 gives the problems that could not be proved in the span of my project: the alternation of  $T_5$  and  $T_6$  outside the transition regions with  $T_2$ , the behavior for B = 0, etc.
- Chapter 5 mentions some variations on the game: the variant with finite memory (with the memoryless game as an extreme case), a version where the cards that have been seen are put aside (in a bag for example), having *n* plies instead of 2, and having more than 2 players.

I hope that this helps you.

Best wishes, Sabih

## References

- [1] I. Stewart. Concentration: A winning strategy. Scientific American, 265(4):103–105, October 1991.
- [2] U. Zwick and M.S. Paterson. The memory game. *Theoretical Computer Science*, 110:169–196, 1993.