

NEURAL NETWORKS PROGRAMS

BRANCH-AND-BOUND SEARCH

4

- * Partial solution: $\tilde{\mathbf{f}}^{(k)}$.
- * Cost estimation of a partial solution consists of cost components for:
 - + specified part of solution,
 - + unspecified part of solution.

$$\tilde{c}(\tilde{\mathbf{f}}^{(k)}) = \tilde{g}(\tilde{\mathbf{f}}^{(k)}) + \tilde{h}(\tilde{\mathbf{f}}^{(k)})$$

* In case of TSP: use *spanning tree* for estimation. The spanning tree is a minimal-weight tree in a graph. Consider in this case the all the points still to be interconnected; they total interconnection length will never exceed the length of the minimal spanning tree. The spanning tree can be found with a polynomial-time algorithm.

December 16, 1999

BACKTRACKING VARIATIONS

7

- * Use *breadth-first* search instead of *depth-first* search. Possibilities for *queue*:
 - + FIFO,
 - + LIFO,
 - + Least cost.

* Use dynamic search tree instead of static search tree.

8

DYNAMIC PROGRAMMING

- * Consider optimization problems characterized with a *complexity parameter p* (in general: multiple complexity parameters).
- * Main idea: construct the optimal solution for some instance with p = k using known solutions of instances with p < k; this is done by means of some *construction rule*.
- * Use the construction rule to start building intermediate solutions starting from the smallest instances required (e.g. p = 0 or p = 1 and usually trivial to solve).

December 16, 1999

December 16, 1999

9

11

0

0

DYNAMIC PROGRAMMING FOR TSP

- * Given is the graph G(V, E) with edge weights w.
- * Select an arbitrary vertex $v_s \in V$.
- * p = k means find shortest path from v_s to any $v \in V$ that goes through exactly *k* intermediate vertices.
- * Notation: C(S, v) is shortest path length from v_s to v exactly passing through the vertices in *S*.
- * Solution amounts to computing:

 $C(V \setminus \{v_s\}, v_s).$

* Construction rule:

$$C(S, v) = \min_{m \in S} [C(S \setminus \{m\}, m) + w((m, v))]$$

December 16, 1999

NEURAL NETWORKS PROGRAMS

LINEAR PROGRAMMING EXAMPLE

- * A company produces two products P_1 and P_2 with ingredients I_1 and I_2 .
- * P_1 uses a_{11} units of I_1 and a_{21} units of I_2 . Its unit price is c_1 . Its daily production is x_1 units.
- * P_2 uses a_{12} units of I_1 and a_{22} units of I_2 . Its unit price is c_2 . Its daily production is x_2 units.
- * The company cannot receive more than b_1 units of I_1 and b_2 units of I_2 per day.
- * Problem: maximize the daily revenue $c_1x_1 + c_2x_2$ subject to

$a_{11}x_1 + a_{12}x_2 \le b_1$	$x_1 \ge$
$a_{21}x_1 + a_{22}x_2 \le b_2$	$x_2 \ge$

INTEGER LINEAR PROGRAMMING (ILP)

- * Special case of linear programming.
- * General method to convert a large class of combinatorial optimization problems into a uniform mathematical form.
- * After conversion, the problem can be solved by ILP-solvers.
- * ILP is NP-complete.
- * Applications in combinatorial optimization:
 - + for small problem instances
 - + to have certainty about exact solution for benchmarking heuristics
 - + as a source of inspiration for developing new heuristics.

December 16, 1999

December 16, 1999

10

13

INTEGER LINEAR PROGRAMMING

- * Additional constraint on linear programming: all variables are integers.
- Solving the LP version first and then rounding results may give bad * or unfeasible solutions.
- * A special case that is often encountered is zero-one ILP: all variables can be either 0 or 1.

December 16, 1999

PROGRAMS

ILP FOR TSP

- Given is the graph G(V, E) with edge weights w. *
- Introduce a variable x_i for each edge $e_i \in E$, $1 \le i \le k$. *
- * $x_i = 1$ if and only if e_i is part of the solution.
- Cost function to minimize: *

$$\sum_{i=1}^{k} w(e_i) x_i$$

- Constraints to ensure: *
 - + that only two edges per vertex are selected;
 - + that there are no multiple disjoint tours.

December 16, 1999

14