
NEURAL NETWORKS

PROGRAMS

1

December 16, 1999

EXACT SOLUTION METHODS
* An instance: I � (F,c).
* Suppose that:

f � F � f � [f1, ���, fn]T.

* Explicit/implicit constraints.
* Examples: TSP

A B

C

D

E

F

9

5 4
5

8

2

7

1

5

3

NEURAL NETWORKS

PROGRAMS

2

December 16, 1999

EXHAUSTIVE SEARCH: BACKTRACKING
backtrack(int k)

f

float new cost;
if (k = n) f

new cost := cost(val);
if (new cost < best cost) f

best cost := new cost;
best solution := copy(val);

g
g

else
for each (el 2 allowed(val, k)) f

val[k] := el;
backtrack(k + 1);

g

g

float best cost;
solution element val[n], best solution[n];

main ()

f

best cost :=1;
backtrack(0);
report(best solution);

g

NEURAL NETWORKS

PROGRAMS

3

December 16, 1999

SEARCH TREE EXAMPLE

F DE D C E B F B C C B C

A

D E B CE D D

F

A

E

A

E

A

D E

A

C

D F C D E

C F

B

F

A

B

A

C B

A

D B

A

C F B C D

D F

E

A

E

C

B

B D C E

D

F

D

B

A

EC

x

x x

x x x

x x

x

x x

x

27 31 332727 27 2720 33 31 20 27

f1 �

f2 �

f3 �

f4 �

f5 �

f6 �

f7 �

NEURAL NETWORKS

PROGRAMS

4

December 16, 1999

BRANCH-AND-BOUND SEARCH

* Partial solution: f
~(k)

.
* Cost estimation of a partial solution consists of cost components for:

+ specified part of solution,
+ unspecified part of solution.

 c~(f
~(k)

) � g~(f
~(k)

) � h
~
(f
~(k)

)

* In case of TSP: use spanning tree for estimation. The spanning tree
is a minimal-weight tree in a graph. Consider in this case the all the
points still to be interconnected; they total interconnection length will
never exceed the length of the minimal spanning tree. The spanning
tree can be found with a polynomial-time algorithm.

NEURAL NETWORKS

PROGRAMS

5

December 16, 1999

BRANCH-AND-BOUND SEARCH (CODE)
b and b(int k)

f

float new cost;
if (k = n) f

new cost := cost(val);
if (new cost < best cost) f

best cost := new cost; best solution := copy(val);

g
g

else if (lower bound cost(val,k) � best cost)
/* No action, node is killed. */

else
for each (el 2 allowed(val, k)) f

val[k] := el;
b and b(k+ 1);

g

g

NEURAL NETWORKS

PROGRAMS

6

December 16, 1999

BRANCH-AND-BOUND EXAMPLE

FE C E B F

A

D

F

A

D F C D E

C F

B

F

A

C F

D F

E F

x x

272727 20

f1 �

f2 �

f3 �

f4 �

f5 �

f6 �

f7 �

5+15

8+16

11+9

X

21+6

23+8

22+9

14+10

NEURAL NETWORKS

PROGRAMS

7

December 16, 1999

BACKTRACKING VARIATIONS
* Use breadth-first search instead of depth-first search. Possibilities

for queue:
+ FIFO,
+ LIFO,
+ Least cost.

* Use dynamic search tree instead of static search tree.

NEURAL NETWORKS

PROGRAMS

8

December 16, 1999

DYNAMIC PROGRAMMING
* Consider optimization problems characterized with a complexity pa-

rameter p (in general: multiple complexity parameters).
* Main idea: construct the optimal solution for some instance with

p � k using known solutions of instances with p � k; this is done by
means of some construction rule.

* Use the construction rule to start building intermediate solutions
starting from the smallest instances required (e.g. p � 0 or p � 1
and usually trivial to solve).

NEURAL NETWORKS

PROGRAMS

9

December 16, 1999

DYNAMIC PROGRAMMING FOR TSP
* Given is the graph G(V,E) with edge weights w.
* Select an arbitrary vertex vs � V.
* p � k means find shortest path from vs to any v � V that goes

through exactly k intermediate vertices.
* Notation: C(S, v) is shortest path length from vs to v exactly passing

through the vertices in S.

* Solution amounts to computing:

 C(V�{ vs} ,vs).
* Construction rule:

C(S, v) � min
m�S

�C(S�{ m} , m) � w((m,v))]

NEURAL NETWORKS

PROGRAMS

10

December 16, 1999

INTEGER LINEAR PROGRAMMING (ILP)
* Special case of linear programming.
* General method to convert a large class of combinatorial optimiza-

tion problems into a uniform mathematical form.
* After conversion, the problem can be solved by ILP-solvers.
* ILP is NP-complete.
* Applications in combinatorial optimization:

+ for small problem instances
+ to have certainty about exact solution for benchmarking heuris-

tics
+ as a source of inspiration for developing new heuristics.

NEURAL NETWORKS

PROGRAMS

11

December 16, 1999

LINEAR PROGRAMMING EXAMPLE
* A company produces two products P1 and P2 with ingredients I1 and

I2.

* P1 uses a11 units of I1 and a21 units of I2. Its unit price is c1. Its daily
production is x1 units.

* P2 uses a12 units of I1 and a22 units of I2. Its unit price is c2. Its daily
production is x2 units.

* The company cannot receive more than b1 units of I1 and b2 units
of I2 per day.

* Problem: maximize the daily revenue c1x1 � c2x2 subject to
a11x1 � a12x2 � b1

a21x1 � a22x2 � b2

x1 � 0

x2 � 0

NEURAL NETWORKS

PROGRAMS

12

December 16, 1999

LINEAR PROGRAMMING (LP)
Given : matrix A vectors b, c (constants) and the vector x (unknowns).

Canonical form:
* Minimize or maximize:

cTx
* Subject to:

Ax � b
x � 0

Standard form:
* Minimize or maximize:

cTx
* Subject to:

Ax � b
x � 0

* The two forms can be converted into each other.
* Solvable in polynomial time by ellipsoid algorithm; in practice better

performance with simplex algorithm (exponential time complexity).

NEURAL NETWORKS

PROGRAMS

13

December 16, 1999

INTEGER LINEAR PROGRAMMING
* Additional constraint on linear programming: all variables are inte-

gers.
* Solving the LP version first and then rounding results may give bad

or unfeasible solutions.
* A special case that is often encountered is zero-one ILP: all vari-

ables can be either 0 or 1.

NEURAL NETWORKS

PROGRAMS

14

December 16, 1999

ILP FOR TSP
* Given is the graph G(V,E) with edge weights w.
* Introduce a variable xi for each edge ei � E, 1 � i � k.
* xi � 1 if and only if ei is part of the solution.
* Cost function to minimize:

�
k

i�1

w(ei)xi

* Constraints to ensure:
+ that only two edges per vertex are selected;
+ that there are no multiple disjoint tours.

