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WEIGHTS IN NEURAL NETWORKS

There are three approaches to the computation of weights in neural
networks:

* Weights are directly computed from the problem description without
going through a training phase. This method is used in e.g. Hopfield
memories.

* Weights are adjusted during a training phase in order to reproduce
as closely as possible the behavior given by input-output pairs. This
is called supervised learning. It is e.g. used for feedforward net-
works.

* Weights are adjusted during a training phase in order to cluster data
given in a training set. No desired output is known; the network tries
to find similarities in the input patterns. This is called unsupervised
learning. It is e.g. used in Kohonen networks.
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NEURON MODEL WITH BIAS
* Neuron model with N inputs as considered until now:
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* In many cases an extra  bias input  with value 1 is used; it is multi-
plied by weight w0:
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McCULLOCH-PITTS NEURON MODEL
* Proposed in 1943.
* A special case of a neuron with bias where all weight values are � 1

and the activation function g is the step function S (S(v) � 1 if v � 0
and S(v) � 0 otherwise).

* Single neurons can be used to build Boolean functions. Examples:
+ NOT: y � S(�x1).
+ 2-input OR: y � S(�1� x1 � x2).
+ 2-input AND: y � S(�2� x1 � x2).
+ 3-input AND: y � S(�3� x1 � x2 � x3).

* Any logic function can be constructed by combining elementary
functions built from single neurons (because any function can be
constructed from ORs, ANDs and NOTs).

* Not a serious alternative for implementation with logic gates.
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GEOMETRIC INTERPRETATION (1)
* Consider the condition for

which the induced local field of
the 2-input OR becomes 0:

�1� x1 � x2 � 0.

* The equation separates the
points where the function is 1
from the points where the func-
tion is 0.

* If such a separation is possible,
the points are called linearly
separable. The points of the
two-input XOR function are e.g.

not linearly separable.
* Note that the bias input allows

for lines that do not pass
through the origin.
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GEOMETRIC INTERPRETATION (2)
* It is convenient to see the bias

as part of the input vector and
to consider from now on the ex-
tended input vector:

x � (1,x1, ��� , xN)T

* Similarly, it is convenient to de-
fine an extended weight vector:

w � (w0, w1, ��� , wN)T

* The points are now separated
by a hyperplane described by
x � w � 0. Note that the hyper-

plane always passes through
the origin.
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ROSENBLATT PERCEPTRON
* Proposed in 1958.
* It differs from the McCulloch-Pitts neuron in the fact that real-valued

inputs and weights are allowed. The activation function is still the
step function. The neuron’s behavior is described by (sgn(v) � 1 if
v � 0 and sgn(v) � �1 otherwise):

y � sgn(w� x)

* It can implement any function RN � {�1, 1}  provided that the input
vectors are linearly separable.

* The desired behavior is given by pairs (xp, dp), p � 1, ��� , Q,
dp �� 1.

* The issue is to find the specification of the hyperplane or, equivalent-
ly, the correct extended weight vector w such that dp(w� xp) � 0 for
all p � 1, ��� , Q.
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PERCEPTRON LEARNING RULE
* Start with any weight vector w0.

* Process the desired input-out-
put pairs:

if dpwt � xp � 0,
wt�1 � wt � �dpxp.

* It can be proven that the repeti-
tive application of the learning
rule will lead to a weight vector
w* that correctly specifies the
separating hyperplane.
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CONVERGENCE PROOF (1)
* Assumptions: the vectors xp

are normalized, i.e. �xp� � 1;
the vector w* is normalized as
well. The choice for the learn-
ing rate: � � 1.

* Suppose that the weight vector
is corrected for some xp:

wt�1 � wt � dpxp

* The angle � between wt�1 and
w* is found from:

cos� �
w* � wt�1
�wt�1�

* Consider the numerator:

w* � wt�1 � w* � (wt � dpxp)

w* � wt�1 � w* � wt � dpw* � xp

w* � wt�1 � w* � wt � �

where � � min
Q

p�1
dpw* � xp.

* Note that � � 0 because w*

correctly separates the points
xp.

* By induction:

w* � wt�1 � w* � w0 � (t � 1)�
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CONVERGENCE PROOF (2)
* Consider the denominator:

�wt�1�2 � (wt � dpxp) � (wt � dpxp)

�wt�1�2 � �wt
�2 � 2dpwt � xp � �xp�2

* Because dpwt � xp � 0 (otherwise no correction would be neces-

sary) and �xp�2 � 1:

�wt�1�2 � �wt
�2 � 1

* And by induction:

�wt�1�2 � �w0
�2 � t � 1
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CONVERGENCE PROOF (3)
* Combining the results for the numerator and denominator:

cos� �
w* � w0 � (t � 1)�

�w0
�2 � t � 1�

* This expression grows to infinity as t � �. However, cos� cannot
grow larger than 1. The conclusion is that the algorithm converges
to a solution after a finite number of time steps.
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SPEEDING UP CONVERGENCE
* The learning rule was:

if dpwt � xp � 0, wt�1 � wt � �dpxp.

* Modify the update of the weights to (� is a small positive constant):

wt�1 � wt �
� dpwt � xp � �

�xp�2
dpxp.

* The rule guarantees that the error due to xp is corrected in one step.

dpwt�1 � xp � dp���

�

	

wt �
� dpwt � xp � �

�xp�2
dpxp���




�

� xp � � � 0.

* So, no weight correction is necessary due to xp at time t � 1.
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SOLUTION BY LINEAR
PROGRAMMING (1)

Remember the linear-programming formulation of optimization prob-
lems.
* Given: matrix A vectors b, c (constants) and the vector x (un-

knowns).
Standard form:

* Minimize or maximize: cTx.
* Subject to: Ax � b, x � 0.

* Solvable in polynomial time by ellipsoid algorithm; in practice better
performance with simplex algorithm (exponential time complexity).
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SOLUTION BY LINEAR
PROGRAMMING (2)

* The training set of the Rosenblatt perceptron contains the pairs
(xp, dp), p � 1, ��� , Q, dp �� 1. Each pair can be translated into a lin-
ear constraint:

w0 � xp
1
w1 ����� xP

NwN � 0 if dp � 1.

w0 � xp
1
w1 ����� xP

NwN � 0 if dp � �1.

* Multiplying the equations by �1 where appropriate and applying the
substitution wi � z2i�1 � z2i, i � 1, ��� , N and z2i�1, z2i � 0, one can
translate all constraints to a form suitable for linear programming:

Az� 0, z� 0.
* The cost function is not relevant. The constraints, and therefore also

perceptron learning, can be solved in polynomial time.
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MULTILAYER PERCEPTRONS
* A Rosenblatt perceptron can discriminate between two halves of the

input space (the weight vector specifies a separating hyperplane).
* Consider the following feedforward multilayer neural network:

+ The first layer consists of Rosenblatt perceptrons and compute
different bisections of the input space.

+ The next layers compute Boolean combinations of the outputs of
the first layer, e.g. using McCulloch-Pitts neurons.

* Such a feedforward multilayer network can be configured such that
any function  RN � {�1, 1}  can be computed provided that the net-
work contains a sufficient number of neurons in the appropriate lay-
ers.
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MULTILAYER PERCEPTRON
TERMINOLOGY

x1 xN

y1 yi

���

���

yj yk���

Input layer

One or more
hidden layers

Output layer

* Normally there will be fewer neurons in the hidden layer(s) than in-
puts in order to achieve some kind of “data compression”.
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TRAINING MULTILAYER PERCEPTRONS
* The training problem for a multilayer network is much more complex

than than the training of a single neuron. Some important issues:
+ What complexity should the network have? How many layers,

how many neurons per layer?
+ Too few neurons makes the network unable to learn the desired

behavior. Too many neurons increases the complexity of the
learning algorithm.

+ A desired property of a neural network is its ability to generalize
from the training set. If there are too many neurons, there is the
danger of overfitting: the network gives the desired output for in-
puts in the training set, but shows “wild” behavior for inputs not in
the training set.

+ How should the training be performed? Does there exist an effec-
tive algorithm?
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BACKPROPAGATION ALGORITHM (1)
* One of the most successful training algorithms for multilayer feedfor-

ward networks is the backpropagation algorithm.
* It is a gradient-descent method, which implies that the functions de-

scribing the neural network should be differentiable. This especially
means that the activation functions should be differentiable.

* Activation functions that are often used are the sigmoid function and
the logistic function. They vary between �1 and 1 and, respectively
0 and 1.

* Sigmoid function:

f (v) � 1� e��v

1� e��v

* Logistic function:

g(v) � 1
1� e��v
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BACKPROPAGATION ALGORITHM (2)
* A neuron output will be indicated by yi, i � 1, ��� , M.

* The neurons belonging to the output layer have indices i � C.
* The training set is given by pairs (xp, dp) where xp has dimension N

and dp has dimension |C|.
* The output of a neuron with index i for an input pattern xp is yp

i
.

* The error that the network makes for an input pattern xp is:

�
p � 1

2
�
k�C

	
�

�
ep

j
	
�

�

2
; ep

j
� dp

j
� yp

j
.

* The algorithm to be presented performs the training on a pattern-by-
pattern basis. So, the error measure given above is sufficient. More
sophisticated algorithms may use an error measure based on the
entire training set before updating the weight.
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BACKPROPAGATION ALGORITHM (3)
* The main idea of the algorithm is:

+ Apply some input pattern xp to the network’s input and propagate
its effects forward to the output neurons.

+ Calculate the error backward from outputs to inputs to determine
the error at each neuron.

+ Update the weights of each neuron based on the errors.
* Consider the sensitivity of an output neuron for its weights:

��p

�wji
� ��p

�ep
j

�ep
j

�yp
j

�yp
j

�vp
j

�vp
j

�wji

* vp
j
 is the induced local field of neuron j for input xp.
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BACKPROPAGATION ALGORITHM (4)
* The different partial derivatives are straightforward to compute:

��p

�ep
j

� ep
j
; 
�ep

j

�yp
j

� �1; 
�yp

j

�vp
j

� g�(vp
j
); 

�vp
j

�wji
� yp

i
.

* The weights can be updated as:

wji � wji � �
��p

�wij
, or: �wji � � �

��
�wji

� �ep
j
g�(vp

j
)yp

i
� ��

p
j
yp

i
.

* �
p
j
 is called the local gradient. So, the value for weight update de-

pends on the local gradient and the input values of the neuron on
which the weight is applied.
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BACKPROPAGATION ALGORITHM (5)
* For neurons in hidden layers �wji � ��

p
j
yp

i
 still holds. Only the local

gradient is more difficult to derive. Consider first the layer just before
the output layer.

�
p
j
� ���p

�yp
j

�yp
j

�vp
j

� ���p

�yp
j

g�(vp
j
).

��p

�yp
j
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k�C

ep
k

�ep
k

�yp
j

� �
k�C

ep
k

�ep
k

�vp
j

�vp
k

�yp
j

� ��
k�C

ep
k
g�(vp

j
)wkj � ��

k�C

�
p
k
wkj.

* The above rule can be used in general to calculate �wji  for any
weight in the network.
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BACKPROPAGATION ALGORITHM (6)
Issues that matter:
* Does the algorithm get stuck in local minima? Answer: yes.
* What is an appropriate stopping criterion? Convergence cannot be

proved in general.
* Can the learning speed be improved?
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FURTHER READING
* The presentation of the McCullogh-Pitts and Rosenblatt percep-

trons was mainly based on:
[1] Rojas, R., ”Neural Networks, A Systematic  Introduction”,  Springer, Berlin, (1996).

* The presentation of the backpropagation algorithm was mainly
based on:

[2] Haykin, S., Neural Networks, A Comprehensive Foundation, Prentice Hall International,
Upper Saddle River, New Jersey, Second Edition, (1999).


