
NEURAL NETWORKS

SUPERVISED LEARNING

1

February 3, 2000Sabih H. Gerez, University of Twente

WEIGHTS IN NEURAL NETWORKS

There are three approaches to the computation of weights in neural
networks:

* Weights are directly computed from the problem description without
going through a training phase. This method is used in e.g. Hopfield
memories.

* Weights are adjusted during a training phase in order to reproduce
as closely as possible the behavior given by input-output pairs. This
is called supervised learning. It is e.g. used for feedforward net-
works.

* Weights are adjusted during a training phase in order to cluster data
given in a training set. No desired output is known; the network tries
to find similarities in the input patterns. This is called unsupervised
learning. It is e.g. used in Kohonen networks.

NEURAL NETWORKS

SUPERVISED LEARNING

2

February 3, 2000Sabih H. Gerez, University of Twente

NEURON MODEL WITH BIAS
* Neuron model with N inputs as considered until now:

y � g
�����

�

�

�
N

j�1

wjxj
�����

�

�

* In many cases an extra bias input with value 1 is used; it is multi-
plied by weight w0:

y � g
�����

�

�

w0 ��
N

j�1

wjxj
�����

�

�

NEURAL NETWORKS

SUPERVISED LEARNING

3

February 3, 2000Sabih H. Gerez, University of Twente

McCULLOCH-PITTS NEURON MODEL
* Proposed in 1943.
* A special case of a neuron with bias where all weight values are � 1

and the activation function g is the step function S (S(v) � 1 if v � 0
and S(v) � 0 otherwise).

* Single neurons can be used to build Boolean functions. Examples:
+ NOT: y � S(�x1).
+ 2-input OR: y � S(�1� x1 � x2).
+ 2-input AND: y � S(�2� x1 � x2).
+ 3-input AND: y � S(�3� x1 � x2 � x3).

* Any logic function can be constructed by combining elementary
functions built from single neurons (because any function can be
constructed from ORs, ANDs and NOTs).

* Not a serious alternative for implementation with logic gates.

NEURAL NETWORKS

SUPERVISED LEARNING

4

February 3, 2000Sabih H. Gerez, University of Twente

GEOMETRIC INTERPRETATION (1)
* Consider the condition for

which the induced local field of
the 2-input OR becomes 0:

�1� x1 � x2 � 0.

* The equation separates the
points where the function is 1
from the points where the func-
tion is 0.

* If such a separation is possible,
the points are called linearly
separable. The points of the
two-input XOR function are e.g.

not linearly separable.
* Note that the bias input allows

for lines that do not pass
through the origin.

x1

x2

0

1

1

NEURAL NETWORKS

SUPERVISED LEARNING

5

February 3, 2000Sabih H. Gerez, University of Twente

GEOMETRIC INTERPRETATION (2)
* It is convenient to see the bias

as part of the input vector and
to consider from now on the ex-
tended input vector:

x � (1,x1, ��� , xN)T

* Similarly, it is convenient to de-
fine an extended weight vector:

w � (w0, w1, ��� , wN)T

* The points are now separated
by a hyperplane described by
x � w � 0. Note that the hyper-

plane always passes through
the origin.

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

x1

x2

0

x0

NEURAL NETWORKS

SUPERVISED LEARNING

6

February 3, 2000Sabih H. Gerez, University of Twente

ROSENBLATT PERCEPTRON
* Proposed in 1958.
* It differs from the McCulloch-Pitts neuron in the fact that real-valued

inputs and weights are allowed. The activation function is still the
step function. The neuron’s behavior is described by (sgn(v) � 1 if
v � 0 and sgn(v) � �1 otherwise):

y � sgn(w� x)

* It can implement any function RN � {�1, 1} provided that the input
vectors are linearly separable.

* The desired behavior is given by pairs (xp, dp), p � 1, ��� , Q,
dp �� 1.

* The issue is to find the specification of the hyperplane or, equivalent-
ly, the correct extended weight vector w such that dp(w� xp) � 0 for
all p � 1, ��� , Q.

NEURAL NETWORKS

SUPERVISED LEARNING

7

February 3, 2000Sabih H. Gerez, University of Twente

PERCEPTRON LEARNING RULE
* Start with any weight vector w0.

* Process the desired input-out-
put pairs:

if dpwt � xp � 0,
wt�1 � wt � �dpxp.

* It can be proven that the repeti-
tive application of the learning
rule will lead to a weight vector
w* that correctly specifies the
separating hyperplane.

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
x0

x1

0

wt

xp

wt�1

NEURAL NETWORKS

SUPERVISED LEARNING

8

February 3, 2000Sabih H. Gerez, University of Twente

CONVERGENCE PROOF (1)
* Assumptions: the vectors xp

are normalized, i.e. �xp� � 1;
the vector w* is normalized as
well. The choice for the learn-
ing rate: � � 1.

* Suppose that the weight vector
is corrected for some xp:

wt�1 � wt � dpxp

* The angle � between wt�1 and
w* is found from:

cos� �
w* � wt�1
�wt�1�

* Consider the numerator:

w* � wt�1 � w* � (wt � dpxp)

w* � wt�1 � w* � wt � dpw* � xp

w* � wt�1 � w* � wt � �

where � � min
Q

p�1
dpw* � xp.

* Note that � � 0 because w*

correctly separates the points
xp.

* By induction:

w* � wt�1 � w* � w0 � (t � 1)�

NEURAL NETWORKS

SUPERVISED LEARNING

9

February 3, 2000Sabih H. Gerez, University of Twente

CONVERGENCE PROOF (2)
* Consider the denominator:

�wt�1�2 � (wt � dpxp) � (wt � dpxp)

�wt�1�2 � �wt
�2 � 2dpwt � xp � �xp�2

* Because dpwt � xp � 0 (otherwise no correction would be neces-

sary) and �xp�2 � 1:

�wt�1�2 � �wt
�2 � 1

* And by induction:

�wt�1�2 � �w0
�2 � t � 1

NEURAL NETWORKS

SUPERVISED LEARNING

10

February 3, 2000Sabih H. Gerez, University of Twente

CONVERGENCE PROOF (3)
* Combining the results for the numerator and denominator:

cos� �
w* � w0 � (t � 1)�

�w0
�2 � t � 1�

* This expression grows to infinity as t � �. However, cos� cannot
grow larger than 1. The conclusion is that the algorithm converges
to a solution after a finite number of time steps.

NEURAL NETWORKS

SUPERVISED LEARNING

11

February 3, 2000Sabih H. Gerez, University of Twente

SPEEDING UP CONVERGENCE
* The learning rule was:

if dpwt � xp � 0, wt�1 � wt � �dpxp.

* Modify the update of the weights to (� is a small positive constant):

wt�1 � wt �
� dpwt � xp � �

�xp�2
dpxp.

* The rule guarantees that the error due to xp is corrected in one step.

dpwt�1 � xp � dp���

�

	

wt �
� dpwt � xp � �

�xp�2
dpxp���

�

� xp � � � 0.

* So, no weight correction is necessary due to xp at time t � 1.

NEURAL NETWORKS

SUPERVISED LEARNING

12

February 3, 2000Sabih H. Gerez, University of Twente

SOLUTION BY LINEAR
PROGRAMMING (1)

Remember the linear-programming formulation of optimization prob-
lems.
* Given: matrix A vectors b, c (constants) and the vector x (un-

knowns).
Standard form:

* Minimize or maximize: cTx.
* Subject to: Ax � b, x � 0.

* Solvable in polynomial time by ellipsoid algorithm; in practice better
performance with simplex algorithm (exponential time complexity).

NEURAL NETWORKS

SUPERVISED LEARNING

13

February 3, 2000Sabih H. Gerez, University of Twente

SOLUTION BY LINEAR
PROGRAMMING (2)

* The training set of the Rosenblatt perceptron contains the pairs
(xp, dp), p � 1, ��� , Q, dp �� 1. Each pair can be translated into a lin-
ear constraint:

w0 � xp
1
w1 ����� xP

NwN � 0 if dp � 1.

w0 � xp
1
w1 ����� xP

NwN � 0 if dp � �1.

* Multiplying the equations by �1 where appropriate and applying the
substitution wi � z2i�1 � z2i, i � 1, ��� , N and z2i�1, z2i � 0, one can
translate all constraints to a form suitable for linear programming:

Az� 0, z� 0.
* The cost function is not relevant. The constraints, and therefore also

perceptron learning, can be solved in polynomial time.

NEURAL NETWORKS

SUPERVISED LEARNING

14

February 3, 2000Sabih H. Gerez, University of Twente

MULTILAYER PERCEPTRONS
* A Rosenblatt perceptron can discriminate between two halves of the

input space (the weight vector specifies a separating hyperplane).
* Consider the following feedforward multilayer neural network:

+ The first layer consists of Rosenblatt perceptrons and compute
different bisections of the input space.

+ The next layers compute Boolean combinations of the outputs of
the first layer, e.g. using McCulloch-Pitts neurons.

* Such a feedforward multilayer network can be configured such that
any function RN � {�1, 1} can be computed provided that the net-
work contains a sufficient number of neurons in the appropriate lay-
ers.

NEURAL NETWORKS

SUPERVISED LEARNING

15

February 3, 2000Sabih H. Gerez, University of Twente

MULTILAYER PERCEPTRON
TERMINOLOGY

x1 xN

y1 yi

���

���

yj yk���

Input layer

One or more
hidden layers

Output layer

* Normally there will be fewer neurons in the hidden layer(s) than in-
puts in order to achieve some kind of “data compression”.

NEURAL NETWORKS

SUPERVISED LEARNING

16

February 3, 2000Sabih H. Gerez, University of Twente

TRAINING MULTILAYER PERCEPTRONS
* The training problem for a multilayer network is much more complex

than than the training of a single neuron. Some important issues:
+ What complexity should the network have? How many layers,

how many neurons per layer?
+ Too few neurons makes the network unable to learn the desired

behavior. Too many neurons increases the complexity of the
learning algorithm.

+ A desired property of a neural network is its ability to generalize
from the training set. If there are too many neurons, there is the
danger of overfitting: the network gives the desired output for in-
puts in the training set, but shows “wild” behavior for inputs not in
the training set.

+ How should the training be performed? Does there exist an effec-
tive algorithm?

NEURAL NETWORKS

SUPERVISED LEARNING

17

February 3, 2000Sabih H. Gerez, University of Twente

BACKPROPAGATION ALGORITHM (1)
* One of the most successful training algorithms for multilayer feedfor-

ward networks is the backpropagation algorithm.
* It is a gradient-descent method, which implies that the functions de-

scribing the neural network should be differentiable. This especially
means that the activation functions should be differentiable.

* Activation functions that are often used are the sigmoid function and
the logistic function. They vary between �1 and 1 and, respectively
0 and 1.

* Sigmoid function:

f (v) � 1� e��v

1� e��v

* Logistic function:

g(v) � 1
1� e��v

NEURAL NETWORKS

SUPERVISED LEARNING

18

February 3, 2000Sabih H. Gerez, University of Twente

BACKPROPAGATION ALGORITHM (2)
* A neuron output will be indicated by yi, i � 1, ��� , M.

* The neurons belonging to the output layer have indices i � C.
* The training set is given by pairs (xp, dp) where xp has dimension N

and dp has dimension |C|.
* The output of a neuron with index i for an input pattern xp is yp

i
.

* The error that the network makes for an input pattern xp is:

�
p � 1

2
�
k�C

	
�

�
ep

j
	
�

�

2
; ep

j
� dp

j
� yp

j
.

* The algorithm to be presented performs the training on a pattern-by-
pattern basis. So, the error measure given above is sufficient. More
sophisticated algorithms may use an error measure based on the
entire training set before updating the weight.

NEURAL NETWORKS

SUPERVISED LEARNING

19

February 3, 2000Sabih H. Gerez, University of Twente

BACKPROPAGATION ALGORITHM (3)
* The main idea of the algorithm is:

+ Apply some input pattern xp to the network’s input and propagate
its effects forward to the output neurons.

+ Calculate the error backward from outputs to inputs to determine
the error at each neuron.

+ Update the weights of each neuron based on the errors.
* Consider the sensitivity of an output neuron for its weights:

��p

�wji
� ��p

�ep
j

�ep
j

�yp
j

�yp
j

�vp
j

�vp
j

�wji

* vp
j
 is the induced local field of neuron j for input xp.

NEURAL NETWORKS

SUPERVISED LEARNING

20

February 3, 2000Sabih H. Gerez, University of Twente

BACKPROPAGATION ALGORITHM (4)
* The different partial derivatives are straightforward to compute:

��p

�ep
j

� ep
j
;
�ep

j

�yp
j

� �1;
�yp

j

�vp
j

� g�(vp
j
);

�vp
j

�wji
� yp

i
.

* The weights can be updated as:

wji � wji � �
��p

�wij
, or: �wji � � �

��
�wji

� �ep
j
g�(vp

j
)yp

i
� ��

p
j
yp

i
.

* �
p
j
 is called the local gradient. So, the value for weight update de-

pends on the local gradient and the input values of the neuron on
which the weight is applied.

NEURAL NETWORKS

SUPERVISED LEARNING

21

February 3, 2000Sabih H. Gerez, University of Twente

BACKPROPAGATION ALGORITHM (5)
* For neurons in hidden layers �wji � ��

p
j
yp

i
 still holds. Only the local

gradient is more difficult to derive. Consider first the layer just before
the output layer.

�
p
j
� ���p

�yp
j

�yp
j

�vp
j

� ���p

�yp
j

g�(vp
j
).

��p

�yp
j

� �
k�C

ep
k

�ep
k

�yp
j

� �
k�C

ep
k

�ep
k

�vp
j

�vp
k

�yp
j

� ��
k�C

ep
k
g�(vp

j
)wkj � ��

k�C

�
p
k
wkj.

* The above rule can be used in general to calculate �wji for any
weight in the network.

NEURAL NETWORKS

SUPERVISED LEARNING

22

February 3, 2000Sabih H. Gerez, University of Twente

BACKPROPAGATION ALGORITHM (6)
Issues that matter:
* Does the algorithm get stuck in local minima? Answer: yes.
* What is an appropriate stopping criterion? Convergence cannot be

proved in general.
* Can the learning speed be improved?

NEURAL NETWORKS

SUPERVISED LEARNING

23

February 3, 2000Sabih H. Gerez, University of Twente

FURTHER READING
* The presentation of the McCullogh-Pitts and Rosenblatt percep-

trons was mainly based on:
[1] Rojas, R., ”Neural Networks, A Systematic Introduction”, Springer, Berlin, (1996).

* The presentation of the backpropagation algorithm was mainly
based on:

[2] Haykin, S., Neural Networks, A Comprehensive Foundation, Prentice Hall International,
Upper Saddle River, New Jersey, Second Edition, (1999).

