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This document is meant to be an introduction to VHDL both as a simulation languageand an input
language for automatic logic synthesis. It is based on material originally prepared for theASIC Design
Laboratorytaught at the University of Twente in the years 1993-2002.1 The text has undergone a major
revision in order to be suitable for use in the elective courseVLSI System Designaround 2000 and once
more for adaptation to the courseSystem-on-Chip Designin 2004.2

Suggestions to improve the text are always welcome.

Before presenting the syntax of the language, first some general background information on top-down
design and the design trajectory is presented. The document then continues with a short explanation of
the simulation principles that the language assumes. The last part of the document deals with synthesis
issues.

Design and coding rules, indicated by the keywords “D/C Rule” and typeset in a framed box, are
included in this text. Consider them to be mandatory and respect them in your designs.
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1 VHDL History

The essence oftop-down designis that one starts with the specifications of a system and goes through
a process of step-by-step refinement that culminates in a completed design.A formal language can be
quite helpful in that process. It allows to define and document all intermediate design steps plus the final
design, leaving no room for misinterpretation. It is possible to use a familiar programming language for
that purpose, which is sometimes actually done, but the formal specification of hardware usually works
better with a so-calledhardware description language(HDL).
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VHDL for Simulation and Synthesis 3

Many HDLs have been developed in the past, each with its specific strengthsand weaknesses. Since
these were not standardized and since the average design was less complex than is the case nowadays,
the development and use of HDLs initially remained an academic issue. This situation has changed
in the 1980s, however. With the support of the U.S. Defense Department, experts then developed
an HDL for use in all military projects. This language was calledVHDL, which stands for “VHSIC
Hardware Description Language” (VHSIC in turn stands for “Very HighSpeed Integrated Circuit”).
The language quickly also became popular for non-military applications. Already for decades, there
are just two widely-used HDLs, the second one beingVerilog. They can more or less be used to describe
the same things and are supported by the major vendors of computer-aided design tools. Both VHDL
and Verilog have been accepted as a standard by theIEEE, the Institute of Electrical and Electronics
Engineers. VHDL has actually been standardized multiple times; the most important standards date
from 1987, 1993 and 2008. The differences between the standards are not relevant in the context of the
current document which adheres to the 1993 standard.

While VHDL was the outcome of work by a large group of programming-language experts, Verilog
was much more an ad-hoc language created for commercial product whichturned out to receive wide
acceptance. As such, it has several weaknesses such as tolerating signals that were nowhere declared.
For this reason, VHDL was the language of choice for the System-on-ChipDesign course.

Before presenting VHDL in later sections, this document pays attention to the chip design flow, the
sequence of design steps, in the next one. Knowledge of the flow shouldmake it easier to understand
how design can be supported by a language like VHDL.

2 The ASIC/FPGA Design Flow

One way to look at the type of electronic systems that are considered here,is to see them as a mere
collection of large numbers ofCMOS transistorsthat are interconnected in a specific way. However,
the knowledge of transistors alone is not sufficient to build these systems. Insight in the hierarchical
structuring of these systems is necessary for the design of both analog and digital systems.

In the digital domain, one can interconnect transistors to obtain elementary gates such as a 2-input
NAND and a D-flipflop. These gates can be combined for building more complex units such as adders,
multipliers and registers. These units, on their turn, can be parts of processors. Multiple processors may
be required to obtain an entire data processing system on a single chip. Thelarger the blocks become,
the higher the level of abstraction. For each level of abstraction specificdesign knowledge is required.

At the highest levels of abstraction, one is hardly aware that hardware isbeing designed. Only functional
relations matter. Designers want to experiment with executable specifications tohave an idea of the
complexity of the design, the bottlenecks, etc. At this stage simulations based ona general-purpose
language such as C is often used, although VHDL and specific system-level description languages may
be used as well.

In a next stage, properties of hardware, mainly the possibility to perform calculations in parallel have to
be dealt with. One should decide about the hardware units to be used and the mapping of computations
on the hardware. Two issues have to be settled: on which unit will some calculation take place and
when. These are the problems ofassignmentandscheduling. They can either be solved manually or
usingarchitectural synthesis(also calledhigh-level synthesis) tools.3

3The elective courseImplementation of Digital Signal Processingdedicates significant attention to architectural synthesis.
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Figure 1: Hardware model at the RT level, corresponding to a Mealy machine.

At the register-transfer (RT) level, the timing of a design is specified at the resolution of clock cycles:
one knows what has to happen from the moment that a register output valuechanges until new values
become available to update the registers in the next clock cycle. If one seesa design as astate machine
in which the registers hold the system state, hardware at the RT level obeysthe model of Figure 1. The
figure depicts a so-called Mealy-type finite state machine. Combinational logic computes the next state
and outputs from the current state and current inputs.

At this stagelogic synthesiscan be performed to design the combinational logic that will implement
the next-state function. Logic synthesis is the process of optimizing Boolean expressions and finding
the best mapping on the gates available in the chosen technology. If the inputdescription for logic
synthesis is given in VHDL, the process is calledVHDL synthesis. Logic synthesis is common practice
nowadays and will be covered in detail in later on in this document. A convenient property of VHDL
synthesis is that the VHDL code that can be processed by the synthesis tools, is in principle independent
of the target implementation, whether it be anapplication-specific integrated circuit(ASIC) or afield-
programmable gate array(FPGA). Both type of implementations differ at the level of basic building
blocks, the so-calledstandard cells. All available cells are part of alibrary. The VHDL synthesis tools
do not need to know all details of library cells. What matters is the functionality (e.g. 2-input NAND,
positive edge-triggered D-flipflop) and the delays associated to the propagation of the signals through
the gates.

After logic synthesis, the design will consist of an interconnection of library cells, the so-callednetlist.
The netlist needs to be processed bybackendtools that are specific for the target implementation.

In the case of an ASIC, the backend tools will generate the layout of the entire chip byplacing and
routing the cells (decide on where to put each cell and determine how the wires between the cells run).
The result is a specification of all masks that are needed in the IC production process. As you probably
know, the fabrication of an IC is a complex process in which masks are usedto selectively etch on
silicon, deposit dopants, grow oxide layers, etc.

An FPGA is an integrated circuit itself and is, therefore, produced in the same way. Its main character-
istic, however, is that its functionality is electrically programmable. Without goinginto the details of
the different FPGA architectures, it is sufficient to state here that they contain memories (permanent or
volatile) that determine the functionality of small logic units (combinational gates of, say, 4 inputs, a
single-bit flipflop that may be bypassed, etc.) as well as the way the units areinterconnected. Changing
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the contents of these memories amounts toreconfiguringthe FPGA to become a new system.

Backend tools for FPGAs also need to perform placement and routing. Asopposed to ASICs where
additional space for wiring can be created by pulling cells apart, the wiring capacity in an FPGA is fixed
in advance. The routing task is therefore more difficult. The result produced by the backend tools is a
specification of the memory contents for the FPGA device. In a prototyping environment, the backend
tools will transmit the memory patterns directly to an FPGA mounted on a board suchthat the design
can be verified in a practical setting.

Clearly, FPGAs are an ideal platform forprototypingpurposes. They are significantly cheaper than
ASICs for situations in which the system specifications are subject to change. Once large series of
a chip are needed, it becomes profitable to design ASICs. In ASICs the silicon area required for the
same functionality is far less, the power consumption is lower and higher operating frequencies may be
possible.

In the analog domain, fewer levels of abstraction exist. One can e.g. distinguish current mirrors, ampli-
fiers, etc. that can be used to build a digital-to-analog (D/A) converter bit cell and combine these cells
to obtain a multibit D/A converter. In general, analog circuits are harder to design than digital circuits.
As all voltage and current values matter, parasitic capacitors and resistors have to be carefully taken
into account during design. Whereas automatic synthesis can deal with thousands or even millions of
transistors for digital circuits, the opportunities for automatic synthesis of a analog circuits are far more
limited.

For this reason, analog circuits will in general requirefull-customlayout. This means that the designer
can fully control the shapes of the mask patterns. Composing a circuit by merely placing and routing
cells from a library is calledsemi-customdesign. Note that the design of the library cells themselves, is
a full-custom activity.

One can look at top-down design as a process in which gradually more andmore detail is added to a
specification. The introduction of more detail also involves the risk of the introduction of errors. This
is not only true when a human person is in charge of the design, but also when automatic synthesis
tools are used. Unfortunately, the synthesis tools themselves, which can beconsiderably complex, can
contain bugs. For these reasons, verification of intermediate design stages by simulation is extremely
important.

An alternative to simulation isformal verification. Simulation has the strong disadvantage that any
nontrivial circuit has too many different input patterns and too many internal states to be exhaustively
verified. The goal of formal verification is to reason about circuits in a mathematical way andprove
that a detailed design behaves fully according to specification. The necessity to consider all possible
input combinations is e.g. avoided in a similar way that a mathematical proof does not need to substitute
all possible values for variables in an equation. Few commercial products for formal verification exist,
while the topic continues to receive attention from academic researchers. Such tools are not used in this
course.

Given the importance of simulation in the design process and the many levels of abstractions that
exist, VHDL emerges as a powerful language because it is meant in the first place exactly to support
simulations at many levels of abstraction, from the bit level where each separate wire carrying binary
signals is distinguished, to the system level at which data types may be used that are not directly related
to hardware equivalents. Even more levels can be covered with VHDL-AMS: it allows the description
of circuits containing analog parts (AMS stands for “analog and mixed-signal”).
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3 The VHDL Approach to Design

A number of concepts that were presented during the explanation of the design flow in the previous
section, are clearly recognizable in VHDL. The most important of these arethe following:

• Behavior versus structure.A behavioral description of a hardware building block, regardless
of whether the block covers the overall design or only a part, strictly documents the relation
between the input and output signals. It does not say anything about thedivision of the block into
subblocks. If such a division exists, then we have a structural description. You should note that a
structural description not only specifies the subblocks that make up the block, but also the exact
interconnection between the various blocks.

• Hierarchy and abstraction.The subblocks making up a block that has a structural description,
can on their turn have their own structural description. This can go onrecursivelyuntil we
finally come to theelementaryor atomicbuilding blocks of the design. In this lab course, for
example, these blocks are the elements from the cell library. Under different circumstances the
individual transistors might be the elementary building blocks. The recursive division of the
building blocks results in ahierarchical description of the design. A concept that is related to
hierarchy isabstraction. At a given level in the hierarchy, not all details of the underlying levels
are important. By eliminating those details, abstraction enables us to refer to the calculations at
a specific level in a meaningful way. It might be useful, for example, to express a calculation
at a certain abstraction level in integers, while at a lower level the same calculation might be
described in terms of the bits in the binary representation of those numbers.

• Top-down design.This design methodology starts with a behavioral description of the overall
system to be designed. The system is then subdivided into a number of subblocks. This is
calleddecomposition. It results in a structural description at the highest level while the subblocks
initially get a behavioral description. These are on their turn divided into interconnected blocks
with a behavioral description each. In this way, a completely structural description is ultimately
obtained. The behavior of the blocks at higher abstraction levels followsbottom-upfrom the
behavior of the elementary building blocks and the structure.

These concepts are illustrated in Figure 2. In Figure 2(a) the full circuit Xis shown with its input and
output signals A through D. The first step in a top-down design process isto divide X into its subblocks
Y and Z as given in Figure 2(b). Note that the signals on the outside of the circuit are not affected in
any way, even though twointernalsignals E and F have been added. In Figure 2(c) Z is split up further
into Z1 and Z2. The recursive division of the design can be reflected in adecomposition treeas shown
in Figure 2(d).

The advantage of using VHDL or another hardware description language in a top- down design method-
ology is that each decomposition step can be verified immediately. This is done bysimulating the de-
scription before and after decomposition using the same input signals. This approach is used as much
as possible during this course.

It should be noted that, while simulation is a common and useful tool to verify designs, it does not
provide any guarantee of correctness because the number of possiblecombinations of input patterns
for circuits is hardly manageable (except for small and trivial circuits). An alternative forverification
through simulationis formal verification, as mentioned in Section 2. Until now, it was assumed that a
decomposition step would be performed directly by the designer. It can alsobe done, however, using
CAD tools. This is calledautomatic synthesis. If the tools do not produce errors, then verification of
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Figure 2: A block with a purely behavioral description (a), its division into two subblocks (b), a further
subdivision (c), and the decomposition tree (d).

the decomposition is not needed. This is calledcorrectness by construction. On the other hand, the
complexity of automatic synthesis tools is so high that some verification of its resultsis still desired to
obtain confidence in the quality of the design.

4 VHDL Libraries, Packages, and Entities

This section presents a first set of important VHDL constructions. They are presented in the context of
a simple circuit calledsiso8 based on 8-bit serial-in serial-out communication.

Note: VHDL is not case sensitive (except in character and string constants). Only lower-case letters are
used in this text.

As mentioned in Section 3, it is important to define the signals through which a hardware unit com-
municates with the outside world during the design process. The actual content of the unit, which can
consist of behavior or structure, is largely independent from those signals. In VHDL, the specification
of communication takes place through the declaration of anentity. Figure 3 presents the declaration of
the entitysiso8 .

All information that is presented in VHDL to a CAD system is supposed to be stored in alibrary. All
libraries have a name that serves as a reference to the library and its contents. The concept of libraries
enables designers to organize their design data, to make well-considered use of the data of others, and to
store designs and components for later use. The actual design that is being worked on is normally stored
in the librarywork . The designer can also indicate in his VHDL code that he wants to use data from
other libraries. Thesiso8 circuit uses the type definitionsstd logic andstd logic vector
which are defined in thepackagestd logic 1164 of the libraryieee .

In general, a package contains definitions of data types, procedures,and functions that have been taken
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library ieee;
useieee.stdlogic 1164.all;

entity siso8is
port (datain: in std logic vector(7downto 0);

clk: in std logic;
reset:in std logic;

req:out std logic;
dataout:out std logic vector(7downto 0);
ready:out std logic);

endsiso8;

Figure 3: The entity declaration for thesiso8 circuit.

together for specific reasons. The packagestd logic 1164 defines a nine-valued data type called
std logic which has been standardized by the IEEE, and functions based on this data type. In
addition to the “normal” values’0’ and’1’ (for “strong” binary signals), the values that are possible
for a signal of this type include’Z’ (for a “tristate” or high-impedant signal),’X’ for an unknown
signal and’U’ for an uninitialized signal (the remaining values are not relevant for the purposes of this
document). The packagestd logic 1164 also defines the data typestd logic vector that is
meant for multi-bit signals each of the typestd logic .

Multiple assignments on the same signal (multiple “drivers” on the same wire) arenot permitted in
VHDL since the value of a signal is not well defined at the moment when two ormore different values
are placed on a signal carrier. This restriction is not valid for so-calledresolveddata types such as
std logic . A resolved data type has aresolution functionthat maps two or more different values of
a certain type on a single value of the same type. Suppose that a bus signal isdriven by two sources,
one with value’Z’ and one with value’1’ . The resolution function will combine these two values
into the value’1’ for the bus. The combination of’1’ and ’0’ , which amounts to a short circuit,
however, will result in value’X’ .

In its simplest form the body of an entity declaration consists of the keywordport , followed by a
specification in parentheses of the signals that are used for the communication with the outside world.
Input signals are indicated by the keywordin and output signals by the keywordout . In addition,
two-way communication can be indicated through the keywordinout .

D/C Rule 1 Two-way communication should not be used in any design.

The serial-in serial-out devicesiso8 has an 8-bit data input calleddata in and an 8-bit data output
calleddata out . Their data type isstd logic vector . It has two single-bit inputs of the type
std logic : reset is necessary to initialize the internal memory elements to a defined value;clk
is the clock signal on the rising edge of which the internal memory elements change their values. The
device also has two single-bit outputs:req is a request signal indicating that new data should be
provided to thedata in input while ready signals that thedata out output is valid and can be
read.
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architecture copyof siso8is
begin

-- the next process is sequential and only sensitive to clk and reset
seq:process(clk, reset)
begin

if (reset = ’1’)
then

dataout<= (others=> ’0’);
ready<= ’0’;

elsif rising edge(clk)
then

dataout<= datain;
ready<= ’1’;

end if;
end processseq;

-- the system is intended to receive new data at each clock cycle
-- (after reset)
req<= ’1’;

endcopy;

Figure 4: Architecture description for the entitysiso8 that simply copies the input to the output.

5 Architectures, Processes, Signals, and Variables

The interface of thesiso8 circuit has been specified by the entity declaration, but nothing has yet been
said about its content. This is done through anarchitecture body. Several architectures can be associated
to a single entity, each with its own name. A single entity can have one or more behavioral or structural
descriptions, so that descriptions at different levels of abstraction canbe available simultaneously (see
also Section 3).

The siso8 circuit will actually be used to implement a wide range of designs. The design with
architecturecopy as given in Figure 4, is a possible behavioral description. This design requests new
data at each clock cycle and stores this data immediately at its output register. In VHDL, any text
following two dashes until the end of the line is considered to becomment.

D/C Rule 2 Be generous in inserting comments to make your code more readable.Indentcode
to emphasize its structure.

A more complex architecture with namegcd implements agreatest common divider(GCD) circuit. It
is presented in Figure 5. This description is based onEuclid’s algorithm. It states that the GCD of two
numbers can be found by repetitively subtracting the smaller number from thelarger, and continuing
this until two equal numbers are left that are equal to the GCD (check for yourself that this algorithm
always gives the correct GCD).

Behavior is specified in VHDL by means of aprocess , of which an architecture can possess several.
A process itself is asequentialcomputation. This means that the statements in the body of a process
are carried out in the order in which they appear in the code. Theparallel nature of hardware expresses
itself through the presence of various processes in a single hardware description. The description of a
process is quite comparable to that in a traditional programming language suchas C. Declarations of
variables and constants are followed by the body of a process between the keywordsbegin andend .
This consists of assignments, if statements, while statements and more.
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library ieee;
useieee.numericstd.all;

architecture gcdof siso8is
-- registers
signalnum1, num2: unsigned(7downto 0);
signalodd, reqi: std logic;
-- wires
signalnum1next, num2next: unsigned(7downto 0);
signalodd next, reqi next, readynext: stdlogic;

begin
seq:process(clk, reset)-- process is sequential
begin

if (reset = ’1’)
then

num1<= (others=> ’0’);
num2<= (others=> ’0’);
odd<= ’0’;
req i <= ’1’; -- the system is ready to receive data after reset
ready<= ’0’;

elsif rising edge(clk)
then

if ((req i = ’1’) and (odd = ’0’))
then

num1<= unsigned(datain);
odd<= ’1’;
ready<= ’0’;

elsif ((req i = ’1’) and (odd = ’1’))
then

num2<= unsigned(datain);
odd<= ’0’;
req i <= ’0’;
ready<= ’0’;

else
num1<= num1next;
num2<= num2next;
req i <= req i next;
ready<= readynext;

end if; -- ((req i = ’1’) and (odd = ’0’))
end if; -- (reset = ’1’)

end processseq;
next val: process(num1, num2)-- combinational process
begin

if (num1> num2)
then

num1next<= num1 - num2;
num2next<= num2;
readynext<= ’0’;
req i next<= ’0’;

elsif (num1< num2)
then

num1next<= num1;
num2next<= num2 - num1;
readynext<= ’0’;
req i next<= ’0’;

else
num1next<= num1;
num2next<= num2;
readynext<= ’1’;
req i next<= ’1’;

end if;
end processnext val;
dataout<= std logic vector(num1);-- output can be any of num1 or num2
req<= req i; -- req wires to reqi

endgcd;

Figure 5: Architecture description for the entitysiso8 that computes the greatest common divider of
two subsequent inputs.
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The architecture of Figure 5 consists of two processes: a process called seq that describes the memory
elements and a processnext val that corresponds to combinational logic for computing the new
values of the memory elements.

VHDL distinguishes betweensignalsandvariables(variables do not yet occur in this example). Signals
transfer data between different processes. Those that are visible from the outside world are declared
after the keywordport in an entity. Local signals also exist; these can be stated within an architecture
between the keywordsis andbegin . A variable, on the other hand, is private to a process and cannot
be accessed by any other process. Variables in a process keep their values from one process invocation
to the next.

An assignment to a signal is indicated by the symbol<=. The value change resulting from the assign-
ment can go into effect either immediately or after a certain amount of time (see also Section 8). This
last situation is expressed by the keywordafter that is followed by an expression that must have a
result of typetime and the value of which corresponds with the desired delay. Example:

c <= a or b after 55ps;

Such a statement could be used to model an OR-gate. An assignment to a variable is indicated by the
symbol:= . The related change always takes place immediately.

Note that the use of the keywordafter typically belongs to VHDL as a simulation language. The
keyword is ignored by logic synthesis tools. Their goal is to take into account the delay of the standard-
cell library cells on which they map a design and to find a solution circuit that meets user constraints
on delay. It is not their intention to generate hardware that is exclusively meant for delaying signals.

The signal names in parentheses that follow the keywordprocess , form thesensitivity list. Each value
change in any of the signals in the sensitivity list causes the process to be activated. In the examples of
Figure 4 and 5, the sequential process is only sensitive to the clock and reset signals. The process first
checks the value of the reset signal. Only when the reset is not active, itchecks whether the clock had
a rising edge and then updates the memory elements. This expresses exactly the fact that the memory
elements are supposed to be implemented bypositive edge-triggered flipflops with asynchronous resets.

D/C Rule 3 All registers in your designs should be updated on the rising clock edge. All resets
should be asynchronous.

Note that a conditional statement in VHDL is built using the keywordsif , then , else , andend if .
Theelse branch is optional. The keywordelsif is available for testing for conditions in decreasing
order of priority. An example can be found in the processnext val . One can useelsif multiple
times in anif statement. Thecase statement is available for testing on multiple conditions of equal
priority. Examples will follow later on in this text.

The second process is a combinational process that computes the new values of the memory elements.
The signals occurring in a combinational process can be partitioned in the disjoint sets of input and
output signals. Having one signal to be both input and output has the danger of creating an unwanted
feedback and possibly a memory element. In the example, the inputs of process next val arenum1
andnum2. The outputs arenum1 next , num2 next , ready next andreq i next . Note that
all four signals contain the new values of signals stored in registers. Envisioning the hardware that is
designed, this, for example, means thatnum1 refers to the outputs of the flipflops holding valuenum1
whereasnum1 next refers to the inputs of these flipflops.
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D/C Rule 4 Use separate VHDL processes to describe combinational and sequential logic.

All input signals of a combinational processmustoccur in its sensitivity list. Omitting a signal may
result in unexpected behavior and different behavior after synthesis.

D/C Rule 5 Be keen on adding all input signals of a combinational process to its sensitivity list.

The VHDL code of the two architectures that are presented here, issynthesizable(see Sections 11 and
12). This means that it makes use of that subset of the full VHDL syntax that can be automatically
mapped onto hardware. Looking into more detail to thecopy architecture of Figure 4, one sees two
memory elements:data out and ready . They are updated at each rising clock edge and should
preserve their content until next rising edge. The value ofdata out after reset is not the result of
any “computation”; for this reason theready signal has reset value’0’ and becomes permanently
’1’ afterwards. Signalreq , on the other hand can be permanently high as the system is supposed
to process all inputs directly after reset. Note that the assignment toreq occurs outside any process.
Such an assignment is called aconcurrent assignmentand is equivalent to the process with just the
assignment in its body that is sensitive to all signals in the right-hand side of theassignment.

In the architecturegcd of Figure 5, any signal that occurs at the left-hand side of an assignment in
processseq is a memory element. The signalreq i has been introduced becausereq is an output
port of siso8 . The semantics of VHDL do not allow that the value of an output port is consulted
within the entity. Hence the introduction of an intermediate signal. The final assignmentreq <=
req i connects the internal signal to the output. The architecture has two internalregistersnum1 and
num2. It first takes care of copying input data sequentially into these registers. Then Euclid’s algorithm
is executed. When doing arithmetic with bit vectors of the typestd logic vector , one needs to
agree on how numbers are encoded in bits. Theunsigned data type used in the code tells e.g. that the
bit pattern should be interpreted as a positive number. The next section gives more information on data
types.

So, processes in synthesizable VHDL are either sequential or combinational:

• A sequential process has only the clock and reset signals in its sensitivity list. The process
consists of anif statement checking the reset and then one checking for the rising edge ofthe
clock. The latter one has noelse branch. The same signal may be present in both the left-hand
and right-hand side of an assignment. When used in the left-hand side, the corresponding register
input is meant. When used in the right-hand side, the register output. At the rising clock edge the
register input is copied to the register output.

• A combinational process is sensitive toall its inputs. All signals in the process except for those
occurring in the left-hand side of an assignment are considered inputs. Those at the left-hand side
are the outputs of the process. The sets of input and outputs signals should be disjoint as there
may otherwise be a feedback path through the logic that is not interrupted byregisters which is
against the principles of synchronous design.
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6 Data Types and Functions for VHDL Synthesis

VHDL has a few built-in data types (such asinteger andcharacter ) and it also has a powerful
mechanism for defining new data types. The standardized typestd logic is an example of a data type
that is not built in. It becomes available by declaring the package that defines it (std logic 1164
in the libraryieee ), before using it. In this section, additional information will be given regarding the
data types standardized by the IEEE for synthesis.

6.1 Data types

In all examples given above, most signals were either of the typestd logic or std logic -
vector . These types are defined in the packagestd logic 1164 of the library ieee . Without
any further measures, these data types can only be used in expressionsinvolving logic functions such as
not andxor . If one wants to use them as arguments for arithmetic functions, other data types should
be used as explained further on.

A data type that is built into VHDL, isinteger . After synthesis, signals of this type will be 32 bits
wide (for most tools). VHDL allows, however, to constrain the range of integers. If one e.g. knows that
some signalx will never be assigned a value greater than 10 and lower than 0, one can declare it as:
signal x: integer range 0 to 10 . This mechanism will result in hardware that uses 4
bits instead of 32 after synthesis. The use of the data typessigned andunsigned that are explained
below, are to be preferred above integers as they force the designer tobe better aware of the number of
bits used.

A bit vector of the typestd logic vector can, of course, represent a number. As you undoubtedly
know, there are many different ways to encode a number as a bit vector (e.g. “plain” binary, Grey-coded
binary, 2’s complement signed, 1’s complement signed, fixed point, floatingpoint, etc.). The IEEE
standard for VHDL synthesis defines two types that are both arrays ofstd logic . These are the
typesunsigned andsigned . Bit vectors of the first type should be interpreted aspositive integers
whereas those of the second type require an interpretation according to atwo’s complementencoding.
They are defined in the packagenumeric std that is stored in the libraryieee . This package should
always be declared when signals or variables of typeunsigned or signed are used (see later on for
an example).

The hardware counterpart of a signal of typestd logic is awire. The counterpart ofstd logic -
vector is a bundle of wires identified with a numeric index. The three array data typesbased on
std logic , viz. std logic vector , unsigned andsigned all correspond to a set of wires (a
bus) in hardware. VHDL knows that the three types are all arrays of thesame type. Although type
checking prevents that signals or variables of different types can directly be assigned to each other, a
“casting” mechanism is available. Suppose, e.g. thata has typestd logic vector andb has type
unsigned and the same width, then the following assignments are legal:

a <= std logic vector(b); and
b <= unsigned(a);

“Casting” amounts toreinterpretationof the same pattern. In VHDL, the types match correctly while
in hardware nothing happens: the bundle of wires stays the same; only the interpretation of the signals
that they carry, changes.
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6.2 Functions

VHDL has the feature found in many object-oriented languages that a function with some name can be
made to behave differently depending on the data types of its arguments. Using so-calledoverloading,
existing functions as well as infix operators, such asand and +, can be made applicable to newly
defined data types.

The packagestd logic 1164 of the libraryieee defines the functionsand , or , not , nand , nor
andxor that are infix operators for two operands of the typestd logic or two operands of the type
std logic vector (having the same length!). The resulting value has the same data type as the two
operands. Example: ifx , y andz are two signals of the typestd logic vector with length 10,z
<= x nand y; will compute the bitwise NAND ofx andy and assign it toz .

The packagenumeric std located in theieee library contains many useful functions related to
the use of the data typesinteger , unsigned and signed . Everything mentioned below for
unsigned has a counterpart forsigned . A selection of these will be mentioned here:

• to integer takes anunsigned as its operand and returns the corresponding integer value.
Example: ifx is of the typeunsigned and has value"1010" , to integer(x) will evaluate
to 10.

• to unsigned is the reverse function and takes two integer operands, the first being theone to
be converted to a vector and the second the length of the vector (the numberof bits). Example: if
x is of the typeinteger and has value 10,to unsigned(x, 5) will evaluate to"01010" .

• The infix operators+ (addition), - (subtraction), and* (multiplication) are defined for two
operands of typeunsigned . The result size for addition and subtraction is the maximum of
the sizes of its operands. For multiplication, the result size is the sum of the sizes of its operands.
Either of the operands can also be of the typeinteger .

• The following relational operators are defined for two operands of typeunsigned : =, /= , >=,
<=, > and<. All return the typeboolean and can therefore be used in e.g. the condition of an
if statement.

• The infix operators/ (division),mod(modulo) andrem (remainder) are usually supported. How-
ever, they will generate expensive hardware, unless the second operand has a constant value that
is a power of 2.

• Of course, all arithmetic operators just mentioned are also applicable to the type integer .
However, the functions are not part of the two packages mentioned here, but are built into VHDL
itself.

Just to be clear, all functions described above are fully specified in the packages mentioned. As long
as the libraries and packages are properly mentioned before the entity declaration, one will be able to
simulate VHDL code that uses the functions because the functions themselveshave been precompiled
and stored in the appropriate libraries. On the other hand, these functionsare special functions that are
recognized by a synthesis tool. It does not need to synthesize the associated function bodies, but will
directly generate hardware for each function.
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library ieee;
useieee.stdlogic 1164.all;
useieee.numericstd.all;

entity my counteris
port (clock, reset:in std logic;

count:out std logic vector(3downto 0));
endmy counter;

architecture behavioralof my counteris
signal local count: unsigned(3downto 0);

begin
sequential:process(clock, reset)
begin

if reset = ’1’
then -- reset value of counter is 5

local count<= to unsigned(5, 4);
elsif rising edge(clock)
then

if local count>= to unsigned(10, 4)
then

local count<= to unsigned(0, 4);
else

local count<= local count + 1;
end if;

end if;
end processsequential;

count<= std logic vector(localcount);
endbehavioral;

Figure 6: The synthesizable VHDL description of an “exotic” counter.

6.3 Example

In this section an example will be discussed in which some of the data types and functions presented
above are used. Two different descriptions of the same hardware will be presented: the first uses the
data typeunsigned for all internal calculations, the second is based on the data typeinteger .
The hardware is an “exotic” type of counter that should start to count upfrom 5 after a reset signal
and should continue counting until 10. Then, as long as no reset signal isgiven, the counter should
repeatedly count from 0 to 10. The data type of the output signal should be std logic vector
because it is a primary output. The two versions of the counter are respectively shown in Figures 6 and
7. Both descriptions should lead to the same hardware when input to a synthesis tool. The use of the
first style is recommended.

6.4 Multidimensional Data Structures

In VHDL, any data structure that is an array, must first be declared as anew data type. For example, the
data typestd logic vector that has been used many times, is declared to be an array of the type
std logic in the packagestd logic 1164 .

The same mechanism can be used to create multidimensional data structures. Inorder to be able to
use two-dimensional data structures, for example, one can first define anew type that is an array of a
one-dimensional data type. One can then declare and use new signals or variables of this type. This is
illustrated in Figure 8 that shows a simple circuit that can receive a multibit data word and store it in a
shift register. The new two-dimensional data type is calledmemory here. It can store 10 data words of
8 bits.
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library ieee;
useieee.stdlogic 1164.all;
useieee.numericstd.all;

entity my counteris
port (clock, reset:in std logic;

count:out std logic vector(3downto 0));
end my counter;

architecture behavioralof my counteris
signal local count: integerrange0 to 10;

begin
sequential:process(clock)
begin

if reset = ’1’
then

local count<= 5;
elsif rising edge(clock)
then

if local count>= 10
then

local count<= 0;
else

local count<= local count + 1;
end if;

end if;
end processsequential;

count<= std logic vector(tounsigned(localcount,4));
end behavioral;

Figure 7: An alternative description of the counter of Figure 6.

A VHDL construct that has not been presented yet, but is very usefulwhen dealing with arrays is the
for loop. It is used twice in the example of Figure 8. Note that the loop countercounter has to be
declared. By the way, there will not be any hardware in the actual realization that holds the counter; the
meaning of thefor loop for synthesis is a repetition in space rather than in time.

7 The Testbench Concept, Structural Descriptions, and Configurations

As already mentioned several times, VHDL modeling (or hardware modeling in general) has at least
two uses:simulationfor the purpose of verification andsynthesisfor the automatic transformation of a
relatively abstract description into a collection of gates from a library. Theentire model of the hardware
that one wants to build is called thedesign under verification(DUV).

A VHDL simulator has various features to control the simulation. A user can indicate the time stretch
that the simulation should cover, the sequence of test signals orstimuli that should be provided to the
DUV, etc. In spite of these facilities, it is a better idea to control the simulation as much as possible
from VHDL itself. The advantage of this is that it requires only minimal knowledge of the simulator
and that one becomes independent of the simulator.

The entirety of DUV and models that drive its inputs and process its outputs is called atestbench. It is
recommended to build a testbench that at least consists of the following models:

• A “test-vector controller” (TVC) entity that has I/O ports that are exactly complementary to those
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library ieee;
useieee.stdlogic 1164.all;
useieee.numericstd.all;

entity shift in is
port (clock, readmode, reset:in std logic;

datain: in std logic vector (7downto 0);
dataout:out std logic vector (7downto 0));

endshift in;

architecture behavioralof shift in is
type memoryis array (1 to 10)of unsigned (7downto 0);
signal local memory: memory;

begin
shift: process(clock, reset)

variable counter: integerrange1 to 10;
begin

if reset = ’1’
then

for counterin 1 to 10 loop
local memory(counter)<= to unsigned(0, 8);

end loop;
elsif rising edge(clock)
then

if readmode = ’1’
then

for counterin 2 to 10 loop
local memory(counter)<= local memory(counter - 1);

end loop;
local memory(1)<= unsigned(datain);

end if;
end if;

end processshift;
dataout<= std logic vector(localmemory(10));

endbehavioral;

Figure 8: A synthesizable multibit shift register.

of the DUV. So, the entity has outputs for each input of the DUV and can provide appropriate
signals in this way.

• A top-level entity without any inputs or outputs. This top level will have astructuralarchitecture
that consists of the DUV and the test-vector controller.

More complex testbenches may have more than one entity to generate inputs forthe DUV or process
its outputs.

The idea of a testbench is illustrated in Figure 9 that depicts the two entities mentioned above for the
case of thesiso8 circuit.

Its VHDL description is then given in Figure 10. Before commenting on the VHDL code of the test-
bench, the concept ofinstantiationwill be introduced. When describing a hardware unit in VHDL
by means of an entity declaration and an architecture, one establishes a kindof template for that unit.
Instantiation is the incorporation of this particular unit in a larger hardware unit. The template, with its
formal parameters, is then used to create a piece of hardware whoseactualparameters are provided by
the instantiating environment. The instantiated piece of hardware is called aninstanceof the template.

The structure architecture of the testbench first declares the components that it needs and then
instantiates them.Componentsandsignalsare declared in the declaration part of the description (before
the keywordbegin ). Note that component declarations strongly resemble entity declarations. In

c© Sabih H. Gerez, University of Twente, The Netherlands August 5, 2019



18 VHDL for Simulation and Synthesis

data_in
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Figure 9: The testbench for DUVsiso8.

library ieee;
useieee.stdlogic 1164.all;

entity tb siso8is
end tb siso8;

architecture structureof tb siso8is
-- declare components to be instantiated
componentsiso8

port (datain: in std logic vector(7downto 0);
clk: in std logic;
reset:in std logic;

req:out std logic;
dataout:out std logic vector(7downto 0);
ready:out std logic);

end component;

componenttvc siso8
port (datain: out std logic vector(7downto 0);

clk: out std logic;
reset:out std logic;

req: in std logic;
dataout: in std logic vector(7downto 0);
ready:in std logic);

end component;

-- declare local signals
signaldatain, dataout: stdlogic vector(7downto 0);
signalclk, reset, req, ready: stdlogic;

begin
-- instantiate and interconnect components
duv: siso8

port map (datain => datain, clk => clk, reset => reset,
req => req, dataout => dataout, ready => ready);

tvc: tvc siso8
port map (datain => datain, clk => clk, reset => reset,

req => req, dataout => dataout, ready => ready);
endstructure;

Figure 10: Entity and architecture for a testbench of thesiso8 circuit.
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configuration conf tb siso8copyof tb siso8is
for structure

for duv: siso8use entitywork.siso8(copy);
end for;
for tvc: tvc siso8use entitywork.tvc siso8(behavior);
end for;

end for;
end conf tb siso8copy;

configuration conf tb siso8gcdof tb siso8is
for structure

for duv: siso8use entitywork.siso8(gcd);
end for;
for tvc: tvc siso8use entitywork.tvc siso8(behavior);
end for;

end for;
end conf tb siso8gcd;

Figure 11: The configurations that fully specify simulation models for thesiso8 circuit.

the body of a structural architecture, the part of the code that comes after the keywordbegin , the
components that have been declared in this way, are instantiated one or moretimes. The declared
signals serve to connect the instances from the body. During instantiation,an instance is connected
either with an internal signal or with one of the input or output signals. Eachinstance is given a name
in the body. This instance name is the label that precedes the component name. The instance name is
referred to from the “configuration” of the hardware (see below).

During instantiation, the keywordsport map precede anassociation listwith signals; in which formal
signals are explicitly linked with the actual signals. The ordering of signals can be arbitrary (it does not
need to follow the ordering of the component declaration).

The architecture of Figure 10 is apurelystructural description: it solely contains instantiations of sub-
blocks but no processes, so no behavioral code. Although it is allowedto mix structural and behavioral
descriptions in one architecture in VHDL, it is strongly recommended not to doso.

D/C Rule 6 Do not mix structural and behavioral descriptions in one VHDL architecture.

The entitytvc siso8 (not shown in this document) will typically take care of clocks and resets as
well as the regular data processing. It is a good habit to read an input data stream for the DUV from a file
and write the output data stream to a file (or compare the outputs with a reference output stream stored
in a file). In this way, one can experiment with different I/O streams without needing to recompile the
models. One can also stop the simulator by means of a VHDLassert statement (such a statement
instructs the simulator to interrupt simulation and print an error message).

While it may appear at first sight that a description such as in Figure 10 contains all information needed
for a structural description, that is not the case. The component declarations may establish a link
with the entities, but an entity generally has more than one architecture. The structural description
must indicate which of the architectures needs to be instantiated for the purpose of simulation. This
specification is achieved by the declaration of aconfiguration. For thesiso8 testbench Figure 11
shows the two configurations to be used for the two architectures presented. The outerfor statement
indicates that the configuration is meant for the architecturestructure of the entitytb siso8 . The
otherfor statements establish a link between an instance name and an entity-architecture combination
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by supplying the architecture name between parentheses after the entity name(there are two instance
names in this example:duv andtvc ). If all instances of a type have the same architecture, then this
is indicated by the keywordall . Note that the librarywork is explicitly referred to. All entities
must be present in this library in compiled format. Note also that a configurationdeclaration in VHDL
can be omitted if only a single architecture has been compiled of each instantiatedentity. This is not
recommended, though.

D/C Rule 7 Define a configuration for each entity that you want to simulate.

VHDL’s configuration mechanism especially shows its power in the context of a testbench. The differ-
ent DUVs that a designer creates throughout the design process should behave the same when simulated
in the same testbench. One does not need to modify the testbench models. Instead one writes a separate
configuration for each DUV version that one wants to simulate. There may even be multiple versions
of the TVC to simulate different operation modes of a DUV (e.g. one that verifies plain operation and
one that verifies test modes such as the scan chain, see Section 9). Note that a configuration can be
composed of entity-architecture combinations or other configurations.

8 The Operation of the VHDL Simulator

Before performing VHDL simulations in practice, it is useful to have a brief look at how the VHDL
simulator works. The presentation is confined to the most important aspects, even though much more
can be said about the structure of the VHDL simulator and about simulation techniques in general.4

Part of the information below has already been discussed earlier in the text.It is repeated and expanded
on here in the hope that further insight arises into the operation of the simulator.

The simulator regards a circuit as a collection ofsignalsandprocesses. Signals can change in value
over time under the impact of processes. A signal change is called atransaction.

Although hardware is parallel by nature, it is generally simulated on a sequential machine. In one
way or the other, processes that are active simultaneously, as well as signals that can change in value
simultaneously, must be dealt with in such a way that the differences betweensimulation and the real
world are as small as possible.

Section 5 already stated that processes must have a “sensitivity list”, meaning that their bodies are
evaluated once each time when one of the signals in the list changes in value. Another category of
processes containwait statements andno sensitivity list (the combination of wait statements and a
sensitivity list is not allowed). A process with wait statements is immediately restarted when its entire
body has been executed, but the evaluation is stopped when a wait statement is encountered (improperly
written code, e.g. with a wait statement in a branch of anif statement that is never selected, will lead
to a process that runs forever). When a process is inactive, the simulator has the possibility to evaluate
another process. A process that has neither a sensitivity list nor a wait statement is hardly meaningful:
once activated it no longer becomes inactive and fully occupies the simulator. Wait statements are not
synthesizable; they are mainly used in system-level hardware models and testbenches.

What the simulator must do at a given moment is indicated through a list of actionsthat is sorted by
time. This is theevent list. “Event” is the designation given to a signal change or a process activation

4See e.g. Gerez, S.H.,Algorithms for VLSI Design Automation, John Wiley and Sons, Chichester, (1999).
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at a specific time. For example, if the process that is active at momentt = t0 encounters the statement
a <= ’1’ after 10 ns , then transactiona <= ’1’ is placed on the event list at momentt =

t0 + 10 ns.

A transaction never takes effect immediately, not even if the code does notspecify any delay (for
example, through a signal assignment without the keywordafter ). In that case, the transaction is
placed on the event list at momentt = t0 + ∆. ∆ is equal to zero (or better: infinitesimally small), but
it allows processes that take place simultaneously to be ordered in time. This is possible because the
following applies:0 < ∆ < 2∆ . . . The notion of an infinitesimally small delay in simulation is called
adelta delay.

The simulation starts with the construction of the event list. All processes in the VHDL description
are placed in the right position in the list. (Most processes start at time zero,applying the rule that a
minimal time of∆ must occur between two activations.) During simulation, the event list is processed
in the order of increasing time. New events that result from this are added inthe event list at the right
position. The simulation is ended when the event list becomes empty, when the simulation is forced to
be terminated by the initiative of the user or by an error.

Using an event list saves computation time. Processes are evaluated only when necessary. This method
is called theevent-drivensimulation technique. It is used in one way or other by practically all digital
simulators.

9 Towards Designing IP Blocks: Parameterizable Components and
Test Interface

Designingsystems on chip(SoCs) is only feasible by the availability of so-calledIP blocks. IP stands for
intellectual propertyand refers to the result of a design activity which has not necessarily materialized
but consists of a collection of, for example, VHDL files. These files represent some economic value.
Hence the name “intellectual property”. In order to face the ever growingcomplexity in IC design, it is
becoming more and more common practice that different parties concentrate on the design of standard
components with a well-defined interface such as a microprocessor, a DMA(direct memory access)
unit, a USB (universal serial bus) interface, etc. The SoC designer has then a relatively easy task to
integrate the different components.

A desirable property of IP blocks is parameterizability. Examples of parameters are the widths of data
and address buses, the size of available memory, etc. In this way, the same component can be reused
in different contexts without the need to rewrite the VHDL code (supposingthat the block has been
designed in VHDL). The parameters should be given a value at the moment of component instantiation.

An important issue in IC design istestability. As a consequence of the delicate manufacturing process
which is e.g. sensitive to dust particles, alignment of masks, etc., ICs that have been produced, are not
guaranteed to function. Each IC needs to be tested before being shippedto the customer. Testing an IC
becomes significantly easier if testing is taken into account during the design of the IC; this is called
design for testability(DFT). Different DFT strategies exist. If one agrees on one of these for all IP
blocks, it becomes easier to combine them at the level of the SoC.

Figure 12 presents a new entity for the SISO example:siso gen . With respect to the entitysiso8
(see Figure 3), it can be seen that the declaration not only contains I/O signals indicated by the keyword
port but also parameters indicated by the keywordgeneric . The only declared parameter is actually
word length : it indicates the number of bits in the input and output wordsdata in anddata out .
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library ieee;
useieee.stdlogic 1164.all;

entity sisogenis
generic(word length: natural);
port (datain: in std logic vector(wordlength-1downto 0);

clk: in std logic;
reset:in std logic;

req:out std logic;
dataout:out std logic vector(wordlength-1downto 0);
ready:out std logic;

-- scan- chain interface
scanin, scanshift: in std logic;
scanout:out std logic);

endsisogen;

Figure 12: The SISO circuit with a generic word length and test interface
.

The generic parameter shows up in the port declaration and can also be used anywhere in an architecture
declaration associated with the entitysiso gen .

The entity has provisions to include ascan chain. Although the topic is outside the scope of this
document, the scan-chain principle will be shortly explained here. A scan chain is a DFT strategy.
Changing the value a control signal, calledscan shift in this example, from’0’ to ’1’ , puts all
flipflops in the design (or a subset of them) in ashift register. In this mode, at each new rising edge of
the clock, the flipflops copy the value of their predecessors in the chain rather than the intended value
for normal (functional) operation. The input and output of this shift register are accessible from outside
the block: they are called herescan in andscan out respectively.

The scan chain makes it possible to bring the hardware into a defined state using the shift mode. In this
way, one can easily provide atest patternat the inputs of all combinational logic in the design. Once
the test pattern has been loaded, one executes one clock cycle in normal mode (makingscan shift
’0’ ). This capturesthe response of the combinational logic into the flipflops. This response canbe
shifted out of the circuit while a new test pattern gets loaded. Faulty ICs canthen be detected by
comparing the measured response with the expected one.

Generic parameters can receive a value when a component is instantiated ina structural architecture. An
example is shown in Figure 13. The testbench consists of two components which both have a generic
parameterword length . The parameter receives a value using thegeneric map construct which
has a similar syntax as theport map construct that it precedes. In this example, the testbench itself
has a genericword length which it passes down to its subblocks. Note also that thetest-vector
controller componenttvc siso gen has two more generics for the input and output files. These
generics are not mapped at the moment of instantiation, which is allowed because default values have
been provided for them.

A useful feature of VHDL is that generic maps (and also port maps) can not only occur in structural
architecture declarationsbut as well inconfiguration declarations. In order to be able to make use of
this feature, a “shell” entitytb siso gen top has been created. It is described in Figure 14. Its only
function is encapsulate the testbench such that the top-level generic can be assigned a value.

Figure 15 illustrates the mapping of generics in a configuration declaration. The configuration is meant
for a gcd architecture forsiso gen (not shown in this document, but very similar to the one of
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library ieee;
useieee.stdlogic 1164.all;

entity tb sisogenis
generic(word length: natural := 8);

end tb sisogen;

architecture structureof tb sisogenis
-- declare components to be instantiated
componentsisogen

generic(word length: natural);
port (datain: in std logic vector(wordlength-1downto 0);

clk: in std logic;
reset:in std logic;

req:out std logic;
dataout:out std logic vector(wordlength-1downto 0);
ready:out std logic;

scanin, scanshift: in std logic;
scanout:out std logic);

end component;

componenttvc sisogen
generic(word length: natural;

in file name: string := ”sisogen.in”;
out file name: string := ”sisogen.out”);

port (datain: out std logic vector(wordlength-1downto 0);
clk: out std logic;
reset:out std logic;

req: in std logic;
dataout: in std logic vector(wordlength-1downto 0);
ready:in std logic;

scanin, scanshift: out std logic;
scanout: in std logic);

end component;

-- declare local signals
signaldatain, dataout: stdlogic vector(wordlength-1downto 0);
signalclk, reset, req, ready: stdlogic;
signalscanin, scanshift, scanout: stdlogic;

begin
-- instantiate and interconnect components
-- note that the generic wordlength is passed to the subblocks
duv: sisogen

generic map(word length => word length)
port map (datain => datain, clk => clk, reset => reset,

req => req, dataout => dataout, ready => ready,
scanin => scanin, scanshift => scanshift,
scanout => scanout);

tvc: tvc sisogen
generic map(word length => word length)
port map (datain => datain, clk => clk, reset => reset,

req => req, dataout => dataout, ready => ready,
scanin => scanin, scanshift => scanshift,
scanout => scanout);

endstructure;

Figure 13: The testbench for the entitysiso gen illustrating thegeneric map construct.
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entity tb sisogen top is
end tb sisogen top;

architecture topof tb sisogen top is
componenttb sisogen

generic(word length: natural := 8);
end component;

begin
tg: tb sisogen;

end top;

Figure 14: The shell entitytb siso gen top.

configuration conf tb sisogengcdof tb sisogen top is
for top

for tg: tb sisogenuse entitywork.tb sisogen(structure)
generic map(word length => 16);

for structure
for duv: sisogenuse entitywork.sisogen(gcd);
end for;
for tvc: tvc sisogenuse entitywork.tvc sisogen(file io)

generic map(word length => 16,
in file name => ”gcd16.in”,
out file name => ”gcd16.out”);

end for;
end for;

end for;
end for;

endconf tb sisogengcd;

Figure 15: The configuration that fully specifies the simulation model for thesiso gen circuit with a
gcd architecture for the hardware and a file-I/O-based architecture for the test-vector controller.

Figure 5) and a test-vector controller that performs a functional simulation based on inputs read from
file and outputs written to file. As can be seen in the figure, generic mappings can be specified at various
levels. The word length is given at the testbench level, while the file names meant for a GCD simulation
are specified one hierarchical level lower.

10 Data Path and Controller Separation

The separation of hardware intocombinationaland (synchronous)sequentiallogic is clear: combina-
tional logic does not have any internal memory and synchronous sequential logic basically changes
value depending on a clock signal. In many cases, it is convenient to separate hardware in another way
into the following parts: adata pathand acontroller. In the data path, the main data processing is done.
The data path e.g. contains arithmetic units, registers, memories, buses, multiplexers, etc.Control sig-
nals such asselectsignals for multiplexers,enablesignals for registers, influence the functioning of the
data path. They are generated by the controller. On the other hand, the data path may generatestatus
signals that e.g. result from a comparison that act as inputs for the controller.

The separation between data path and controller is not always sharp. Anaddress for a memory may be
generated in the controller but may also be computed in the data path (think of incrementing an index
to access array elements).
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��

greater equal

��

data_out

data_in

Figure 16: An example data path for thesiso gen system.

In the designs presented until now, data paths and controllers are not explicitly represented. When one
assigns different values to the same data signal in thethen andelse branches of anif statement,
for example, one describes a multiplexer (in the data path) where the condition(s) of theif statement
represent the select signals (the computation of the conditions belongs to therealm of the controller).
Below, the description of a data-path-controller system will be presented.

Simplified schematics of an example data path suitable for the implementation of thesiso gen system
are given in Figure 16. The data path consists of two arithmetic units that operate onsignedoperands.
An adder/subtractorunit has two input registers (aleft one and aright one) each with anenablesignal
and a control input signal to choose between addition and subtraction. Acomparatorunit also has
two input registers. It generates two status outputs:greater becomes’1’ when the left operand
is greater than the right one;equal becomes’1’ when both operands are equal. The third unit in
the data path is a memory (or more precisely, aregister file) with four locations (the address ranges
from 0 to 3). The memory has a two-bit address to indicate the write location anda two-bit address to
indicate the read location the contents of which are output. The memory output isalso connected to
the system outputdata out . The memory input (which is possibly written to some location) comes
from a multiplexer that takes its value from three sources: the memory output, the adder/subtractor
output or the system inputdata in . The fourth value of the two-bit control signal for this multiplexer
indicates that writing the memory is disabled. The four input registers of the twoarithmetic units are
connected to two-way multiplexers to take data either from the adder/subtractor output or the memory
output. The code for the data path is spread across three figures: Figure 17 shows the entity declaration;
Figure 18 gives an architecture with a behavioral description; for reasons of space, the description of
the combinational logic in this architecture is given in Figure 19.

The data path that has just been presented, can be used to implement various algorithms by combining
it with an appropriate controller. A controller that implements Euclid’s GCD algorithm is given by the
finite-state machine (FSM) depicted in Figure 20. The controller has not been optimized. It implements
the following behavior:

• Input data is first copied to memory locations 0 and 1 respectively. This requires two states.

• Then the two input registers of the comparator are loaded. This requires two states.
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library ieee;
useieee.stdlogic 1164.all;
useieee.numericstd.all;

entity cmp adddp is
generic(word length: natural);
port (datain: in std logic vector(wordlength-1downto 0);

clk: in std logic;
reset:in std logic;

dataout:out std logic vector(wordlength-1downto 0);

-- adder left/right register control
add l sel, addr sel, addl en, addr en, sub:in std logic;

-- comparator left/right register control
cmp l sel, cmpr sel, cmpl en, cmpr en: in std logic;

-- memory control
rd addr, wraddr:in std logic vector(1downto 0);
wr sel en: in std logic vector(1downto 0);

-- comparator status
equal:out std logic;
greater:out std logic);

endcmp adddp;

Figure 17: The entity declaration for the data path of Figure 16.

• Depending on the result of the comparison, the computation is either ready ora subtraction has
to be performed.

• The operands of the subtraction are loaded in such a way that the left operand is always greater
than the right one. This requires two states.

• The result of the subtraction is written into memory in such a way that the largestof the two
operands is overwritten. This needs one state.

There are some subtleties involved in the timing of the controller and data path. Itis a design-style
decision to clock the flipflops in both the data path and the controller on the risingedge of the data path.
If the control signals for the data path are derived from thecurrent stateof the controller, the data path
will lag behind one clock cycle with respect to the controller: one clock edgeis needed to enter the
current state and one more for the data path to react. This means that two clock cycles are necessary to
process state transitions involving status signals: as it takes one clock cyclefor a state transition to be
effective in the data path, the response to a status signal will take one clockcycle more.

The alternative chosen here derives the control signals for the data path from thenext statein the
controller. This makes that a state transition in the controller is simultaneous with theeffect that the
state transition should have on the data path. In this approach, the controllercan react to status signals
without delay, i.e. within one clock cycle.

The VHDL description of the controller entity is given in Figure 21. Note that, inaccordance with
the concept of separating data path and controller, thesiso gen control signalsreq andready are
generated in the controller.

The architecture for this entity implementing the GCD algorithm is shown in Figure 22. It has the
typical structure of the VHDL description of an FSM:
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architecture behavioralof cmp adddp is
-- type declaration for memory
type memoryis array (0 to 3) of signed(wordlength-1downto 0);
-- memory declaration
signal mem: memory;
-- other memory elements
signal add l, add r, cmp l, cmp r: signed(wordlength-1downto 0);
-- wires
signal addout, memout: signed(wordlength-1downto 0);

begin
seq:process(clk, reset)

variable counter: integerrange0 to 3;
begin

if (reset = ’1’)
then

for counterin 0 to 3 loop
mem(counter)<= (others=> ’0’);

end loop;
add l <= (others=> ’0’);
add r <= (others=> ’0’);
cmp l <= (others=> ’0’);
cmp r <= (others=> ’0’);

elsif rising edge(clk)
then

-- memory write
casewr sel en is

when ”00” => null ; -- write is disabled
when ”01” => mem(tointeger(unsigned(wraddr)))<= addout;
when ”10” => mem(tointeger(unsigned(wraddr)))<= memout;
when ”11” => mem(tointeger(unsigned(wraddr)))<= signed(datain);
when others=> null ; -- not relevant for synthesis

end case;
-- register write
if (add l en = ’1’)
then

if (add l sel = ’1’)
then

add l <= addout;
else

add l <= memout;
end if;

end if;
-- other registers left out!

end if;
end processseq;
-- combinational processes left out

endbehavioral;

Figure 18: The architecture declaration for the data path of Figure 16.

• First a newenumeration data typeis used to declare the states. Note that states have a symbolic
encoding. No choice is made on how to encode the state in a binary pattern. This is left to the
synthesis tool.

• There is then a sequential process to describe all memory elements including those holding
current state .

• There is a combinational process for the computation of thenext state.

• Finally, there is a combinational process to calculate the outputs. As motivated above, the outputs
are derived from then next state. The outputs therefore also depend of the (status) inputs making
this FSM a so-calledMealymachine (inMooremachines the output only depends on the current
state).

c© Sabih H. Gerez, University of Twente, The Netherlands August 5, 2019



28 VHDL for Simulation and Synthesis

-- adder/subtractor
addsub:process(add l, add r, sub)

variable add r in: signed(wordlength-1downto 0);
variable carry: integerrange0 to 1; -- easy to add to ”signed” operands

begin
-- for substract, invert bits of ’addr’ and add a carry
if (sub = ’1’)
then

add r in := not(add r);
carry := 1;

else
add r in := addr;
carry := 0;

end if;
addout<= addl + add r in + carry;

end processaddsub;
-- comparator

equal<= ’1’ when (cmp l = cmp r) else’0’;
greater<= ’1’ when (cmp l > cmp r) else’0’;
-- memory read

memout<= mem(tointeger(unsigned(rdaddr)));
-- main output

dataout<= std logic vector(memout);

Figure 19: Description of the combinational logic belonging to the code of Figure 18.

Note that one can implement a large range of algorithms on the same data path by specifying an ap-
propriate controller architecture. One can make the system even more flexible by storing the control
patterns in a memory rather than hard-coding them in an FSM. The patterns stored in the memory may
be called thefirmwareor even thesoftwaredepending on the actual approach chosen. Such a controller
in combination with the data path may already be called a simpleprocessor.

11 VHDL Synthesis Basics

It has been mentioned already that VHDL was primarily designed for purposes ofsimulation in the
1980s. In the 1990s tools became available that could synthesize well-defined subsets of VHDL. Syn-
thesis means here that a VHDL description provided by the user is taken as the specificationof the
hardware and mapped to either an IC or an FPGA design that shows the samebehavior as the specifi-
cation.

One can say that the synthesis tools performsilicon compilation. In a way similar to software com-
pilation where the specification of some computation in a high-level language such as C++ or Java is
automatically translated into machine instructions, a silicon compiler translates a high-level specifica-
tion of hardware behavior into a set of mask patterns on chip that realizes the desired behavior (or into
a configuration pattern of an FPGA).

With some simplification, the VHDL synthesis process can be seen as consistingof first deriving
Boolean equations from the VHDL code and then optimizing these equations such that they can be
realized with the standard cells from a given library (see Section 2). The remaining part of this text
presents typical examples of VHDL code that can be synthesized. Because of its intricacy, some addi-
tional attention is paid on how to specify arithmetic circuits in synthesizable VHDL.

As mentioned in Section 1, VHDL itself has been standardized several times. Synthesis standards also
exist. They deal with two issues: data types to be used in synthesis (see Section 6) and the allowed
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Figure 20: The FSM computing Euclid’s GCD algorithm on the data path of Figure 16.

language subset (see Section 12). In this subset, each language construct has an unambiguous hardware
counterpart. In practice, various synthesis tools support almost the sameVHDL language subset.

One of the main lessons of this text is that VHDL can be the core of an IC design project. One starts
with a formal VHDL description of the behavior of the circuit to be designed.It can be verified through
simulation. This “executable specification” can then be refined using a top-down design approach until
a VHDL description is obtained that can be synthesized, while at the same time simulation is used
to continually verify the correctness of the evolving description. After VHDL synthesis, the resulting
netlist of standard cells can again be described in VHDL. It will, of course, be a structural description
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library ieee;
useieee.stdlogic 1164.all;

entity cmp addctrl is
port (clk, reset:in std logic;

-- main outputs
req, ready:out std logic;

-- status inputs from data path
equal, greater:in std logic;

-- control outputs to data path

-- adder left/right register control
add l sel, addr sel, addl en, addr en, sub:out std logic;

-- comparator left/right register control
cmp l sel, cmpr sel, cmpl en, cmpr en:out std logic;

-- memory control
rd addr, wraddr:out std logic vector(1downto 0);
wr sel en:out std logic vector(1downto 0));

endcmp addctrl;

Figure 21: The controller entity declaration.

where instances of standard cells are interconnected. Behavioral descriptions of the individual standard
cells themselves are given in the library. This final VHDL description of the design can again be
simulated using the original testbench. There are several reasons for simulating the final description.
First of all, the final description will contain timing information based on a realisticmodeling of delays.
It may turn out that the circuit does not work properly due to timing problems.They may be solved by
a revision of the design. A second reason for post-synthesis simulation is that the synthesis tools cannot
always be trusted; due to the complexity of the algorithms, bugs may exist in the software. It may also
be that the user has used non-synthesizable language constructs and then overlooked warnings issued
by the synthesis tool.

12 VHDL Synthesis Through Examples

As was mentioned before, only a subset of VHDL can be synthesized by commercially available synthe-
sis tools. It is not the intention here to exactly describe the subset as defined by the synthesis standards.
Instead, a subset that is sufficient to complete the design exercises, will be informally defined here.

This section will first give some characteristics of the VHDL subset to be used and then explain the
subset by means of some examples.

12.1 General Remarks on Synthesizable VHDL

These are the main properties of the synthesizable subset of VHDL:

• Only a single architecture for each entity to be synthesized is allowed. A second architecture
presented to the system will result in the first one to be ignored. Configurations do not make
sense because no confusion between multiple architectures is possible.
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architecture gcdof cmp addctrl is
-- enumeration type for states: ”state”
type stateis (start,

read1, read2, loadcmp l, load cmp r,
finished,
load add l 0, loadadd r 1, storesub0,
load add l 1, loadadd r 0, storesub1);

signalcurrentstate, nextstate: state;
begin

seq:process(clk, reset)
begin

if reset = ’1’
then

currentstate<= start;
req<= ’1’;
ready<= ’0’;

elsif rising edge(clk)
then

currentstate<= next state;
if (next state = read1)or (next state = finished)
then

req<= ’1’;
else

req<= ’0’;
end if;
if next state = finished
then

ready<= ’1’;
else

ready<= ’0’;
end if;

end if;
end processseq;
new state:process(currentstate, equal, greater)
begin

casecurrentstateis
whenstart => next state<= read1;
when read1 => next state<= read2;
when load cmp r =>

if equal = ’1’
then

next state<= finished;
elsif greater = ’1’
then

next state<= load add l 0;
else

next state<= load add l 1;
end if;

-- other states left out!
end case;

end processnew state;
outputs:process(next state)
begin

casenext stateis
when read1 =>

-- copy from datain to memory address 0; rest is don’t care
add l sel<= ’-’; add l en<= ’-’; add r sel<= ’-’; add r en<= ’-’;
sub<= ’-’;
cmp l sel<= ’-’; cmp l en<= ’-’; cmp r sel<= ’-’; cmp r en<= ’-’;
rd addr<= ”--”; wr addr<= ”00”; wr sel en<= ”11”;

-- other states left out!
end case;

end processoutputs;
endgcd;

Figure 22: A controller architecture implementing the GCD algorithm.
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Input Output
x1x2x3 y1y2

000 11
001 10
010 01
011 01
100 10
101 1D
110 11
111 D1

Table 1: An example of a Boolean function with 3 inputs and 2 outputs.

• The architecture of an entity can either be a behavioral one or a structural one composed of
instantiations of other entities. So, hierarchical descriptions can be used.Multiple entities per
file are allowed.

• Behavioral descriptions of an entity will have one or more processes in thearchitecture body. It is
a good custom to separate combinational and sequential logic into separate processes. Examples
are given later on.

• Synthesizable VHDL should not contain references to absolute time such asin assignments with
theafter keyword. If they do, they are ignored. Signals can be delayed, but only by passing
them through (a chain of) clocked registers.

• Although the synthesizer can deal with many data types, it is strongly recommended to exclu-
sively use thestd logic andstd logic vector data types for the I/O signals of the top-
level entities. These are namely the data types used in the VHDL descriptions of the synthesized
circuits. Sticking to them facilitates the reuse of testbenches.

D/C Rule 8 Only usestd logic or std logic vector data types for the top-level input
and output signals of your design.

12.2 Combinational Logic at the Bit Level

In Table 1 an example of a function with 3 inputs and 2 outputs is given.5 Don’t care outputs are
indicated by a ‘D’. The synthesizable VHDL equivalent of such a function is shown in Figure 23. It is
the synthesizable VHDL equivalent of the truth table given in Table 1. As can be seen from the VHDL
description, the code has a one-to-one correspondence to the truth table. The example teaches a few
points that are valid for VHDL synthesis in general:

• Processes that represent combinational logic, have a sensitivity list thatshould containall inputs
of the hardware unit.

5 The example has been taken from: R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, 1984.

c© Sabih H. Gerez, University of Twente, The Netherlands August 5, 2019



VHDL for Simulation and Synthesis 33

library ieee;
useieee.stdlogic 1164.all;

entity example1is
port (x: in std logic vector (1to 3);

y: out std logic vector (1to 2));
endexample1;

architecture tabularof example1is
begin

react:process(x)
begin

casex is
-- Note: you can’t use don’t cares for the input patterns
-- when using this style of description.
when ”000” => y <= ”11”;
when ”001” => y <= ”10”;
when ”010” => y <= ”01”;
when ”011” => y <= ”01”;
when ”100” => y <= ”10”;
when ”101” => y <= ”1-”;
when ”110” => y <= ”11”;
when ”111” => y <= ”-1”;
when others=> y <= ”--”;

end case;
end processreact;

end tabular;

Figure 23: Truth-table style specification of combinational logic.

• The data typesstd logic andstd logic vector that are used widely for simulation, are
also synthesizable. All value combinations with’0’ and ’1’ for the input signals should be
specified in the VHDL description. Specifying the behavior for input signal values other than’0’
and’1’ does not make sense for synthesis, but is necessary for the simulation ofthe description
prior to synthesis: hence, theothers clause in thecase statement of Figure 23. This clause is
ignored by synthesis tools. The value’-’ for don’t care signals can be used for output values to
allow the logic synthesis algorithms to minimize the hardware. Other data types that can be used
for signals in VHDL synthesis will be discussed later.

• Full specification of all input value combinations isimportant. According to VHDL semantics,
signals that are not assigned during a process invocation maintain their values. For synthesis
this would mean the insertion oflatchesto keep the old signal value for the unspecified input
combinations. This would make the hardware unit sequential instead of combinational.

D/C Rule 9 Always check the warnings issued by the synthesis tool and be especially keen on
inserted “latches”. Latch insertion should not happen. Fix your VHDL such that synthesis does
not insert any latch.

Truth tables are not the only possibility to describe synthesizable VHDL at thebit level. The signal
y1 in Table 1 can e.g. be described as given in Figure 24. An important remarkto be made about
this example is that theboolean data type of VHDL should not be confused with the data type
std logic . The conditional expression of theif statement should evaluate toboolean . Although
the packagestd logic 1164 provides for the use of the operators such asand andor with values
of the typestd logic , one cannot replace the first conditional expression by:(x(1) and not
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library ieee;
useieee.stdlogic 1164.all;

entity example2is
port (x: in std logic vector (1to 3);

y1: out std logic);
endexample2;

architecture behavioralof example2is
begin

react:process(x)
begin

if ((x(1) = ’1’) and (x(3) = ’0’)) or (x(2) = ’0’)
then

y1 <= ’1’;
elsif (x(1) = ’1’) and (x(2) = ’1’) and (x(3) = ’1’)
then

y1 <= ’-’;
else

y1 <= ’0’;
end if;

end processreact;
endbehavioral;

Figure 24: An alternative style for synthesizable VHDL at the bit-level.

library ieee;
useieee.stdlogic 1164.all;

entity condxor is
port (a, b:in std logic vector(11downto 0);

c: in std logic;
result:out std logic vector(11downto 0));

endcondxor;

architecture behavioralof condxor is
begin

react:process(a, b, c)
begin

if c = ’1’
then

result<= axor b;
else

result<= (not a)xor b;
end if;

end processreact;
endbehavioral;

Figure 25: The synthesizable description at the word level of a hardware unit.

x(3)) or not x(2) . The results returned by the operatorsand , etc. are themselves of the type
std logic and not of the typeboolean . Note: VHDL has the possibility ofoperator overloadingas
is e.g. the case in C++; this allows the use of the operatorsand etc. for data types other thanboolean .

An example of a synthesizable combinational logic at the word level is given inFigure 25. The code
describes a hardware unit that computes theexclusive orof two 12-bit signals after inverting the first
signal depending on a control signal.

c© Sabih H. Gerez, University of Twente, The Netherlands August 5, 2019



VHDL for Simulation and Synthesis 35

signal a, b: stdlogic vector (1downto 0);
signal c: std logic vector (3downto 0);

-- Concatenation:

c <= a & b;

casec is
when ”0000” => y <= ’1’; z <= ’0’;
-- other possibilites should follow here ...

end case;
-- Splitting:

a<= c (2downto 1);

-- Range assignment:

c (2downto 1) <= a;

Figure 26: Different possibilities for assigning multiple-bit signals.

12.3 Sequential Logic: A Finite State Machine

As opposed to combinational logic, hardware units with sequential logic havean internal state and the
output values of the unit not only depend on the actual input values but on the state as well. Any piece
of sequential hardware that can be physically built, has a finite number of states (a finite number of
logic gate outputs) and can therefore be called afinite state machine(FSM). The term FSM is often
used for hardware in which the number of states is small such as in the exampleof Figure 20.

The discussion of VHDL synthesis for FSMs is limited to hardware in which states are stored in flipflops
that are connected to a single clock. An example of synthesizable VHDL code for an FSM has already
been given in Figure 22.

Important note:Only positive-edge-triggered synchronous sequential hardware withan asynchronous
reset is considered here. This means that all sequential processes in asynthesizable VHDL description
should only be sensitive to the clock and reset. Such processes are repetitively activated at each clock
edge, but solely specify behavior for the rising clock edge (and for thereset). This means that any action
should terminate within a single clock period. Iterative constructs that use e.g. while statements with
the goal of performing actions that span multiple clock periods are not compatible with the specification
style. The correct way of dealing with such actions is to introduce appropriate state variables that
store the state until the next activation of the process in the next clock period (see e.g. the counter
example of Section 6.3 where a state variable is incremented in each process activation). Iteration is
implicit through of the periodic nature of the clock signal rather than explicit through the use of iterative
language constructs.

12.4 Assignment of Multibit Signals

Another issue that may be useful in the design of hardware and has not yet been discussed here is the
interconnection of multibit signals with unequal length. Different possibilities allowed by VHDL are
shown in Figure 26. Two signals can be juxtaposed to form a wider signal by means of the signal-
concatenation operator “&”. This is not only useful for composing buses. It can also be convenient
in order to have compact and readable code as the wider signal can e.g. be used in a singlecase
statement; multiple nestedif or case statements would otherwise be necessary to describe the same.
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if cond = ’1’
then

y <= a + b;
else

y <= c + d;
end if;

Figure 27: A fragment of VHDL showing a conditional addition.

y

b c da

cond

Figure 28: A 1-to-1 realization of the code of Figure 27.

One can also select a range of bits of a multibit signal both to be used at the left and right hand side of
an assignment.

12.5 Resource Sharing

Consider the fragment of code as shown in Figure 27. A literal interpretation of this code would be that
one computes the additionsa + b andc + d and then passes one of the two results to output signal
y . This implies two adders and one multiplexer as shown in the block diagram of Figure 28.

This is an expensive solution for the intended behavior: two additions are performed and one result is
discarded. As the hardware costs of a multiplexer are lower than the costs of an adder, it is wiser to
multiplex the inputs and perform one addition rather than perform two additionsand multiplex their
outputs. So, one would prefer the hardware of Figure 29 above the oneof Figure 28. One says that the
adderresourceis sharedbetween the two branches of theif statement.

The optimization that was presented, is relatively simple. One would expect that the synthesis tool
should be able to perform it. Many synthesis tools actually have this possibility.However, as such
an optimization modifies the hardware structure implied by the code, it is seen as an option that the
tool user can control. It is recommended not to depend on the peculiarities of the tool but rather
explicitly code the intended hardware structure in VHDL. The code corresponding to Figure 29 is
given in Figure 30. It is supposed that the code is part of the body of a single combinational VHDL
process. As the wirest1 andt2 are internal, they are coded asvariablesrather thansignals. One could
also opt to use two combinational processes for the hardware of Figure 29: one combinational block of
which t1 andt2 are the outputs and another one of which they are the inputs. Thent1 andt2 should
be declared as signals at the level of the VHDL architecture that contains the two processes.
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y

c b da

cond

t1 t2

Figure 29: A cheaper realization of the design of Figure 28.

if cond = ’1’
then

t1 := a;
t2 := b;

else
t1 := c;
t2 := d;

end if;

y <= t1 + t2;

Figure 30: The description of the hardware of Figure 29 in VHDL.
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